PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC. II (Multi-valued Logics)

S. SUMMERSBEE and A. WALTERS

We consider here in greater detail a problem mentioned en passant in our previous paper ${ }^{1}$ viz., the programming of problems in multi-valued logic for solution by means of a digital computer. Once again, to give the inquiry a definite direction a particular problem is chosen for discussion. This problem has already been discussed by Rose ${ }^{2}$ but from a different point of view; it has already been attacked from an entirely different direction, and some solutions obtained, by programme on DEUCE and ACE. ${ }^{3,4}$

The discussion divides naturally into three parts: a description of the machine which is to be programmed to obtain a solution to the problem; the problem to be solved and the formal multi-valued logic used to obtain a solution.

I The Machine In our previous paper we discussed the use of a digital computer working in the binary scale of notation i.e. each number or 'machine word" is represented in the machine in the form

$$
\sum_{i=1}^{n-1} a_{i} 2^{i-1} \quad\left(1 \leqslant i \leqslant n-1 ; a_{i}=0 \text { or } a_{i}=1\right)
$$

Because of such number representation a binary machine is particularly suitable for operating on the values of two-valued propositional variables.

Our present problem is solved in terms of multi-valued logic, although a multi-valued logic can be represented within a two-valued system. The calculation of the values of logical functions is easier of the radix of the number system coincides with that of the n-valued logic used. However, a decimal machine is easier to use than a binary machine for programmes written in an n-valued logic.

[^0]
[^0]: 1. This Journal, v. III No. 3. No knowledge of this paper is assumed.
 2. cf ref. (1) at end.
 3. cf ref. (2) at end.
 4. See ref. (4).
