S1° AND GENERALIZED S5-AXIOMS

IVO THOMAS

We call axioms $A_{j,k}$, $\mathbb{C}M^{j}pL^{k}Mp$ $(1 \leq j, 1 \leq k)$ "generalized S5-axioms" since $A_{1,1}$ is commonly called "the characteristic axiom of S5." Some results of adding such an axiom to Feys's system S1° are investigated. For B_{n} , the generalized Brouwer axioms, see [1] and [2]. Proofs of the theorems depend largely on the rule:

$$\mathcal{R}$$
 In S1° if \vdash $\mathbb{S}M \alpha L\beta$ then \vdash $\mathbb{S} \alpha\beta$

which [3] 4.2 clearly shows to be derivable.

Theorem 1. If j + k is odd, the matrix used in [2] shows that $A_{j,k}$ is insufficient to yield S5.

Theorem II. If j = k, $\{S1^{\circ}, A_{j,k}\} = S5$.

Proof: from $A_{k,k}$ we obtain by \mathcal{R} $A_{1,1}$. The theorem follows by [3] 4.2.

Theorem III. If j = k + 2, $\{S1^{\circ}, A_{i,k}\} = S5$.

Proof: by \mathcal{R} we obtain from $A_{k+2,k}$, $\mathbb{C}M^2pMp$ and so $\mathbb{C}LpL^2p$; hence we have $A_{k+2,k+2}$ and the theorem follows by theorem II.

Theorem IV. If $j = k + 2n \ (n > 1)$, then $\{S1^{\circ}, A_{j,k}\} = \{S1^{\circ}, B_{2n-2}\}$.

Proof: from left to right we proceed:

(1)
$$\mathbb{C}M^{k+2n}pL^kMp$$
 [by hyp.]
(2) $\mathbb{C}M^{2n}pMp$ [(1), \mathbb{R}]
(3) $\mathbb{C}LpL^{2n}p$ [(2), S1°]
(4) $\mathbb{C}M^{k+2n}pL^{k+4n-2}p$ [(1), (3), S1°]
(5) $\mathbb{C}pL^{2n-2}Mp$ [(4), \mathbb{R} .]

For the converse deduction it is enough to show that from B_{2n-2} we can prove $\mathbb{S}M^2pLMp$, $\mathbb{S}M^3pL^2Mp$, ..., $\mathbb{S}M^{2n-1}L^{2n-2}Mp$, since under B_{2n-2} all perpositive indices are strictly equivalent to one of $1, 2, \ldots, 2n-1$. This