NOTE TO MY PAPER: "A DIAGRAM OF THE FUNCTORS OF THE TWO-VALUED PROPOSITIONAL CALCULUS"

THOMAS W. SCHARLE

Theorem 6 of my paper [1] gives a criterion for determining which functors of the two-valued propositional calculus are Sheffer functors, viz. that a functor lie in the N quadrant and not be on the vertical axis. From the nature of the diagram presented, it is obvious that precisely one fourth of the n-ary functors lie in the N quadrant, which means that there are $2^{2^{n}-2}$ of them. (Note that, since the I, U, O, and N quadrants in the diagram correspond respectively to the α, β, γ, and δ functors of Post [2], we have a simple formula for the number of such functors)

On the other hand, we can see that the total number of n-ary functors lying on the vertical axis is the square of the number of ($n-1$)-ary functors on the vertical axis, which yields almost immediately that there are $2^{2^{n-1}}$ of them. Exactly half of these are in the N quadrant, which gives us this equation for the number of n-ary functors satisfying the criterion:

$$
\begin{equation*}
\mathbf{S}(n)=2^{2^{n}-2}-2^{2^{n-1}-1}, \tag{1}
\end{equation*}
$$

where $\mathbf{S}(n)$ is the number of n-ary Sheffer functors. This formula has also been given without proof in [4].

In a recent paper [3], A. R. Turquette investigates the same problem and gives the answer

$$
\begin{equation*}
\mathbf{S}(n)=2^{2^{n}-3}+2^{2^{n}-4}+2^{2^{n}-5}+\cdots+2^{2^{n-1}-1} . \tag{2}
\end{equation*}
$$

Having the well known equation for finite sums

$$
\begin{equation*}
\sum_{i=1}^{n} 2^{-i}=1-2^{n} \tag{3}
\end{equation*}
$$

we can show the identity of the solutions (1) and (2). For from (2) we have

