274

A NOTE ON THE GENERALIZED CONTINUUM HYPOTHESIS. I

BOLESŁAW SOBOCIŃSKI

It is well-known¹ that the following set-theoretical formulas:

A For any cardinal numbers m and n, if m = n, then $2^m = 2^n$

B For any cardinal numbers m and n, if $2^m < 2^n$, then m < n

C For any cardinal numbers m and n, if m < n, then $2^m < 2^n$

D For any cardinal numbers m and n, if $2^{m} = 2^{n}$, then m = n

are such that a) A is provable without any difficulty in the general set theory,² b) we do not know whether it is possible to prove B without the help of the axiom of choice, and that c) we are unable to prove C and D without the aid of the generalized continuum hypothesis, i.e. the formula:

U If m is a cardinal number which is not finite, then there exists no cardinal n such that $m < n < 2^m$

which, as we know, 3 is equivalent to

 \mathcal{B} The axiom of choice

taken in conjunction with the formula

If or any ordinal number α , $2^{\alpha} = \Re_{\alpha+1}$

- i.e. Cantor's hypothesis on alephs. In this note I present several sets of assumptions such that
- α) each of these sets is equivalent either to \mathfrak{A} or to \mathfrak{C} .
- β) almost each of these sets contains either formula C or formula D or a certain instance of one of these formulas.

In the considerations given below I am using constantly several of my results published in [6], and, especially, that formula (G, i.e. Cantor's hypothesis on alephs, is equivalent to the conjunction of the following two formulas:

Received August 16, 1962