Notre Dame Journal of Formal Logic Volume III, Number 3, July 1962

FINITE LIMITATIONS ON DUMMETT'S LC

IVO THOMAS

The propositional system **LC** of [1] can be based on axioms for \supset (implication), \land (conjunction), a constant **f**, and definitions for \lor (alternation) and \urcorner (negation), as hereunder. In primitive notation, elementary variables and **f** are wffs, and if α , β are wffs so are $(\alpha \supset \beta)$, $(\alpha \land \beta)$. To restore primitive notation in the sequel, replace dots by left parentheses with right terminal mates; in a sequence of wffs separated only by implications, restore parentheses by left association; enclose the whole in parentheses. If S is a system, S_c is its implicational fragment, containing only variables and implications. If α is provable (not provable) in S, we write $\begin{vmatrix} \alpha & (-\mid \alpha) \\ S & (\alpha \land \beta) \end{vmatrix}$ if α is uniformly valued 0 (is not uniformly valued 0) by the matrix \mathfrak{M} , we

write $\lim_{m} \alpha$ $(\prod_{m} \alpha)$. As a basis for **LC** we take, with detachment and substitution, the axioms and definitions:

 $p \supset q \supset p$ $p \supset (q \supset r) \supset p \supset q \supset p \supset r$ $p \supset q \supset r \supset q \supset p \supset r \supset r$ $\mathbf{f} \supset p$ $(p \land q) \supset p$ $(p \land q) \supset q$ $p \supset q \supset (p \land q)$ Def. $\mathbf{v} \quad (\mathbf{a} \lor \mathbf{\beta}) = (\mathbf{a} \supset \mathbf{\beta} \supset \mathbf{\beta}) \land (\mathbf{\beta} \supset \mathbf{a} \supset \mathbf{\beta})$

Def. v $(\alpha \lor \beta) = (\alpha \supset \beta \supset \beta) \land (\beta \supset \alpha \supset \alpha)$ Def. $\neg \alpha = \alpha \supset f$

[2] shows that 1-3 suffice for LC_c , and it is well known that 1-2 suffice for IC_c , the positive logic. By [1] the infinite adequate matrix for LC is $\mathfrak{M} = \langle M, \{0\}, \Lambda, \supset, \mathfrak{f} \rangle$ where $M = \{0, 1, 2, \ldots, \omega\}$ and

$$a \wedge b = \max (a, b),$$

$$a \supset b = \begin{cases} 0 \text{ if } a \ge b, \\ b \text{ if } a < b, \end{cases}$$

$$t = \omega.$$

Received November 14, 1961