A SET-THEORETICAL FORMULA EQUIVALENT TO THE AXIOM OF CHOICE

BOLESŁAW SOBOCIŃSKI

It is obvious that the following set-theoretical formula:¹

S1 For any cardinal numbers m and n which are not finite, if $\mathfrak{K}(\mathfrak{m})$ and $\mathfrak{K}(\mathfrak{n})$ are the least Hartogs' alephs with respect to m and n respectively, and such that $\mathfrak{K}(\mathfrak{m}) = \mathfrak{K}(\mathfrak{n})$, then there is no cardinal \mathfrak{p} such that $\mathfrak{m} < \mathfrak{p} < \mathfrak{n}$.

is a simple consequence of the theorem:

A. For any cardinal numbers m and n which are not finite, if $\mathfrak{K}(m)$ and $\mathfrak{K}(n)$ are the least Hartogs' alephs with respect to m and n respectively, and such that $\mathfrak{K}(m) = \mathfrak{K}(n)$, then m = n.

which, as it is proved in [3], p. 230, is inferentially equivalent to the axiom of choice. Although at first glance it appears that formula **S1** is weaker than \mathfrak{A} , in fact, as I shall show in this note, the former formula implies the axiom of choice, and, therefore, it is inferentially equivalent to \mathfrak{A} . For, a proof is given here that the following theorem:

A. For any cardinal number \mathfrak{m} which is not finite, if $\mathfrak{R}(\mathfrak{m})$ is the least Hartogs' aleph with respect to \mathfrak{m} , then there is no cardinal \mathfrak{p} such that $\mathfrak{R}(\mathfrak{m}) < \mathfrak{p} < \mathfrak{m} + \mathfrak{R}(\mathfrak{m})$.

which is inferentially equivalent to the axiom of choice, as it is proved in [2], follows from **\$1** without the aid of the said axiom.

Proof: Let us assume **\$1** and consider that

(i) m is an arbitrary cardinal number which is not finite,

and that

(ii) $\Re(m)$ is the least Hartogs' aleph with respect to m.

Then, obviously, we have

Received November 23, 1961