PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC

S. SUMMERSBEE and A. WALTERS

From time to time automatic defices are suggested which will simulate the operations which can be carried out on the truth-tables of formal logic. Specifically, if a formula $F(X_1 ldots X_n)$ constructed from the propositional variables $X_1 ldots X_n$ and certain logical connectives, is set into the machine it will calculate the truth-value of $F(X_1 ldots X_n)$ from the truthvalues $x_1 ldots x_n$ ($x_i = T$ or F, $l \leq i \leq n$) of $X_1 ldots X_n$. Probably the best known of such devices is that of W. S. Jevons [1], while one of the most recent is designed to deal with many-valued logic [2].

There is no intrinsic reason for choosing the symbols "T" and "F" to represent the truth-values of a proposition, the symbols "1" and "0" will serve the same purpose. In such an event the truth-value of a formula $F(X_1 \ldots X_n)$, determined by the truth-values $x_1 \ldots x_n$ of $X_1 \ldots X_n$, can be written in the form

$$m = \sum_{j=1}^{j=n} a_i 2^{j-1}$$

where $a_i = 0$ or $a_i = 1$. For example, the truth-table for Dpq is

TABLE I Þ 9 Dpq 1 1 1 1 0 1 0 1 1 0 0 0

and the final column of the table can be regarded as having either the value 1110 (= 14) or the value 0111 (= 7) depending on the convention adopted. Alternatively, the values 0, 3, 5, 7 for *m* will give the truth-value of Dpq for given values of *p* and *q*; for example 5 would be rewritten as 101 and hence for p = 1 and q = 0, Dpq = 1.

Received September 17, 1961