CERTAIN FORMULAS EQUIVALENT TO THE AXIOM OF CHOICE

BOLESŁAW SOBOCIŃSKI

In this note it will be shown that each of the following four set-theoretical formulas:

U. For any cardinal numbers m and n which are not finite, if $\Re(m)$ and $\Re(n)$ are the least Hartogs' alephs with respect to m and n respectively, and such that $\Re(m) = \Re(n)$, then m = n.

B. For any cardinal numbers m and n which are not finite, if \Re (m) and \Re (n) are the least Hartogs' alephs with respect to m and n respectively, and such that \Re (m) > \Re (n), then m > n.

C. For any cardinal numbers m and n which are not finite, if $\Re(m)$ and $\Re(n)$ are the least Hartogs' alephs with respect to m and n respectively, and m > n, then $\Re(m) > \Re(n)$.

D. For any cardinal numbers m, n, and p, if m < p, n < p, and for any cardinal numbers x and f, if m + x = p and n + f = p, then x = f, then either $m \ge n \text{ or } n > m$.

is inferentially equivalent to the axiom of choice.¹

Concerning these formulas it should be noted: 1) that the formulas \mathfrak{A} , \mathfrak{B} and \mathbb{G} are related to the following theorem:

T1. For any cardinal numbers m and n which are not finite, if N(m) and N(n) are the least Hartogs' alephs with respect to m and n respectively and m ≤ n, then N(m) ≤ N(n).,

which is provable without the aid of the axiom of choice² and: 2) that the formula \mathfrak{D} is a weaker formulation of the law of trichotomy for cardinal numbers, since in it the trichotomy is preceded by an antecedent consisting of three conditions.³

Proof:

(i) The axiom of choice implies $\mathfrak{A}_r \mathfrak{B}$, \mathfrak{G} , and \mathfrak{D} . It is easy to determine that these theorems follow from the axiom of choice. Viz., in order