THE TRUNCATION OF TRUTH-FUNCTIONAL CALCULATION

DESMOND PAUL HENRY

§1 The precise determination of those combinations of truth-values which verify a sentence (Δ) of the two-value propositional calculus normally requires the exhaustive serial consideration of 2^{n} such combinations when Δ involves n variables. Hereunder are enunciated principles which obviate the invariable necessity for such consideration, without at the same time sacrificing exactitude of calculation.

PART I. Theses on Abbreviational Arrays

§2.1 In this Part theses of the two-value propositional calculus will be expressed in a notation designed for the problem in hand.
§2.2 The 2^{n} possible combination of truth-values of n variables may be generated by reducing to the scale of 2 the integers 0 to $2^{n}-1$, and adding 0 's leftwards where necessary so that each resulting number has n digits: then, assuming that " 1 " and " 0 " represent the truth-constants "true" and "false" respectively, and that " p ", " q " etc., alphabetically ordered, are the propositional variables used, the successive application to p of the series of values given in the unit places of those equivalents(i.e. $0,1,0,1, \ldots$) and of the series given in the radix place (i.e. $0,0,1,1, \ldots$) to q, and so on, ensures that no combination is neglected. In respect of a given Δ the successive outcomes of such allocations may be recorded by means of a row of 2^{n} digits (called a "selector") each corresponding (from left to right) to the combinations of truth-values given by 0 to $2^{n}-1$ (in that order) in the scale of 2 ; e.g. for $n=3$, a 1 -digit in the right-hand (2^{n} th) place indicates that Δ has the value 1 for the set of truth-values given by $2^{n}-1$ in the scale of 2 , vi $z, 1,1$, and 1 , for p, q and r respectively. The explicitation of rules for the economical deternination of selectors, as thus described, corresponding to sentences involving large numbers (e.g. > 6) of

