ON ŁUKASIEWICZ'S Ł-MODAL SYSTEM

TIMOTHY SMILEY

I want to provide a proof of Łukasiewicz's assertion that his \pounds -modal system¹ is characterised by a four-valued matrix. The need for such a proof was pointed out to me by Dr. R. Harrop.

The theorems of the $\not\!\!L$ -modal system are the formulae that can be derived from the axioms

- 1. $C\delta p C\delta N p \delta q$,
- 2. $Cp \Delta p$,

by use of the rules of substitution (for propositional and functorial variables) and detachment.

The matrix in question (call it M) is the cross-product of a pair of two-valued matrices:

If for convenience we number the elements of the product, writing $\langle t, t \rangle = 1$, $\langle t, f \rangle = 2$, $\langle f, t \rangle = 3$, $\langle f, f \rangle = 4$, we can then describe M as follows:

						Ν	
*	1	1	2	3	4	4	1
	2	1	1	3	3	3	1
	3	1	2	1	2	2	3
	4	1	1	1	1	1	3

It is easy to show that every theorem is verified by (never takes an undesignated value in) M. We want to prove the converse, that every formula verified by M is a theorem. We first observe that the truth-table of Δ in the matrix M_1 is such that a formula $\Delta \alpha$ always takes the same truth-value as α itself. If then β is any formula, and β_1 is got from it by replacing