STUDIES IN THE AXIOMATIC FOUNDATIONS OF BOOLEAN ALGEBRA

CZESŁAW LEJEWSKI

Section IV

In Section II we made use of the rule for writing propositional definitions in order to define singular inclusion in terms of weak inclusion within the framework of \mathfrak{S} (or \mathfrak{A}^*).¹¹ Our definition had the form of the following expression:

D6.
$$[a \ b] ::: a \in b \ := :: [] c] \ . \ (a \subset c) \ . \ a \subset b :: [c \ d] \ . \ c \subset a \ . \) : a \subset c \ . \ v \ . \ c \subset d$$

It is obvious that D6 can also serve as a definition of singular inclusion within the framework of \mathfrak{A} .

One might expect, on purely intuitive grounds, that the familiar proposition

$$D_o D1. [ab] \therefore a \subset b = : [c] : c \in a . \supset . c \in b$$

could in turn be used as a definition of weak inclusion in terms of singular inclusion, and that the functor of singular inclusion could be employed as a primitive constant term in a system of Boolean Algebra with definitions. Interestingly enough D_oD1 does not seem to be derivable within \mathfrak{A} unless we strengthen

A1.
$$[a \ b] \therefore a \subset b = : [c \ d \ e] : \sim (c \subset d) \cdot c \subset e \cdot c \subset a \cdot \supset \cdot [f \ g] \cdot \sim (f \subset g) \cdot f \subset e \cdot f \subset b$$

by subjoining to it

A1.1
$$[a b] ::: \sim (a \subset b) . \supset :: [] c d] :: \sim (c \subset d) . c \subset a :: [e f] :: e \subset c .$$

 $\supset : c \subset e . \lor . e \subset f$

Within the framework of \mathfrak{A} proposition A1.1 appears to be independent of proposition A.1. This statement, however, will have to be regarded as a conjecture until an interpretation is found which satisfies A1 and the rules of \mathfrak{A} , including the rule for writing nominal definitions, but fails to satisfy A1.1.¹²