A DOUBLE-ITERATION PROPERTY OF BOOLEAN FUNCTIONS

CARL LYNGHOLM AND WOLFGANG YOURGRAU

It is the object of this paper to furnish a proof of a theorem

$$f(x) = f(f(f(x))),$$

which is derivable from the fundamental equation for the expansion of a Boolean function of one variable:

$$f(x) = (f(1) \cap x) \cup (f(0) \cap \overline{x}) .^{1}$$

From this proposition we may obtain a simple method for rewriting an iterative Boolean function in terms of a non-iterative Boolean function and also for proving the equivalence of two such functions of one variable.

LEMMA 1.
$$f(f(1)) = f(0) \cup f(1)$$
.

PROOF. Using the above fundamental theorem and substituting f(1) for x, we have

$$f(f(1)) = (f(1) \cap f(1)) \cup (f(0) \cap \overline{f(1)})$$

= $f(1) \cup (f(0) \cap \overline{f(1)})$ [by $x \cap x = x$]
= $(f(1) \cup f(0)) \cap (f(1) \cup \overline{f(1)})$
[since $x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$]
= $(f(1) \cup f(0)) \cap 1$ [by $x \cup \overline{x} = 1$]
= $f(1) \cup f(0)$. [since $x \cap 1 = x$]

LEMMA 2.
$$f(f(0)) = f(1) \cap f(0)$$

PROOF. Substituting f(0) for x, we have

$$f(f(0)) = (f(1) \cap f(0)) \cup (f(0) \cap \overline{f(0)}) \qquad \text{[by the fundamental theorem]}$$
$$= (f(1) \cap f(0)) \cup 0 \qquad \qquad \text{[by } x \cap \overline{x} = 0\text{]}$$
$$= f(1) \cap f(0). \qquad \qquad \text{[since } x \cup 0 = x\text{]}$$

Again applying the fundamental theorem, we can now arrive at equivalent expressions for f(f(f(0))) and f(f(f(1))).

Received January 1, 1960