FUNCTIONAL COMPLETENESS OF HENKIN'S PROPOSITIONAL FRAGMENTS

IVO THOMAS

It was shown in [1] that if $\phi(x_1, \ldots, x_2)$ has the defined property of being Tarskian, the addition of schemata (ϕ) as in [2] to the positive logic of implication, A1-2, yields the complete system of classical implication. Knowledge of [1] is pre-supposed. We define:

- Def. \mathfrak{T}_1 For all ϕ , ϕ is Tarskian 1 iff ϕ is Tarskian and is valued F when all its arguments are valued T.
- Def. \mathfrak{T}_2 For all ϕ , ϕ is Tarskian₂ iff ϕ is Tarskian and is valued T when all its arguments are valued T.

THEOREM 1. If ϕ is Tarskian 1, {A1-2, $(\phi)*$ } is functionally complete.

Proof. If ϕ is Tarskian₁, the proof of Lemma 1, case (i)a and the corresponding sub-case of case (ii), in [1], shows that $\{A1-2, (\phi)\}$ contains S1-2 with each *i*-th argument of ϕ either A or $A \supset A$. Defining the negation of A for ϕ with these arguments, we get from S1-2:

(1)
$$A \supset . \sim A \supset C$$

(2) $A \supset C \supset . \sim A \supset C \supset C$.

Taking C in (2) as A, and detaching $A \supset A$, we get

 $(3) \sim A \supset A \supset A .$

Since hypothetical syllogism is given by A1-2, and this with (1) and (3) constitutes the well known Łukasiewicz base for a full and functionally complete system in implication and negation, the theorem follows.

THEOREM 2. If ϕ is valued T when all its arguments are valued T, negation is not definable in the system {A1-3, $(\phi)*$ }.

Proof. The system $\{A1-3, (\phi)\}\$ is, by [2], complete for tautologies in implication and ϕ . So every expression $A \supset B$ with A and B tautologous is provable, and by the hypothesis on ϕ , ϕ ($A \supset A$, \ldots , $A \supset A$) is provable. Hence every expression f (imp, ϕ , $A \supset A$) with implication and ϕ as the only functors, and all elementary argument places filled by $A \supset A$, is provable. We suppose now that negation is definable. We should have as provable

Received April 11, 1960