INVESTIGATIONS ON A COMPREHENSION AXIOM WITHOUT NEGATION IN THE DEFINING PROPOSITIONAL FUNCTIONS

TH. SKOLEM

Introduction
In the paper "Bemerkungen zum Komprehensionsaxiom" in Zeitschr. f. math. Logik und Grundl.d. Math., Bd 3 (1957), p. 1-17, I showed that antinomies of the same kind as Russell's could be avoided in set theory, if this was based on a certain logic, due to Łukasiewicz, with infinitely many truth values. Indeed I proved the existence of domains such that the axiom of comprehension was satisfied for elementary propositional functions ϕ, that is ϕ being built from atomic propositions $u \in v$ by use of conjunction, disjunction, implication and negation only. Later I proved the same for a certain 3-valued logic as shown in a paper which will appear in Math. Scand. Here I shall show in $\oint 1$ and $\S 2$ that the same is true even for ordinary 2 -valued logic, provided that only conjunction and disjunction are allowed in ϕ. In $\oint 3$ I prove that also the axiom of extensionality is valid for the domains constructed in $\S 1$ and $\S 2$. I call the ϕ constructed in this way positive propositions, abbreviated p. pr. The words "atomic propositions" are abbreviated to at. pr.

The two truth values can be 0 (false) and 1 (true). In the sequel I write the conjunction of A and B as $A \wedge B$ and their disjunction as $A \vee B$. Further $A(x)$ for all x is written $\wedge x A(x)$ and $A(x)$ for some x is written $\bigvee^{\prime} x A(x)$.

Now the p. pr. can be defined inductively as follows.

1. The truth constants 0 and l are p. pr.
2. Every at. pr. $x \in y$ is a p. pr. Here x and y are free variables.
3. If A and B are p. pr., so are $A \wedge B$ and $A \vee B$. The latter have the free and bound variables occurring in A and B.
4. If $A\left(x, x_{1}, \ldots, x_{n}\right)$ is a p.pr. with $x, x ;, \ldots, x_{n}$ as free variables $\wedge \mathrm{xA}$ $\left(x, x_{1}, \ldots, x_{u}\right)$ and $\vee \mathrm{xA}\left(x, x_{1}, \ldots, x_{n}\right)$ are p . pr. with x as bound variable, x_{1}, \ldots, x_{n} still as free variables, while the eventually occurring bound variables in $A\left(x, x_{1}, \ldots, x_{n}\right)$ remain bound inthe latterexpressions. If a set y is such that
$\wedge x\left((x \in y)=U\left(x, x_{1}, \ldots, x_{n}\right)\right)$
is true, where x, x_{1}, \ldots, x_{n} are the set variables in the p.pr. U, then y is a set function of $x_{1}, \ldots x_{n}$.
