A RECURSIVE MODEL FOR THE EXTENDED SYSTEM \mathcal{A} OF B. SOBOCIŃSKI

VLADETA VUČKOVIĆ

In this note we construct a model in the recursive arithmetic of words over the alphabet $\mathscr{J}_2 = \{S_0, S_1\}$ for the extended system \mathscr{A} , which was introduced by B. Sobociński in [1], as a complete extension of author's original system A from [2]. With this, an error which appeared in [2], as pointed by B. Sobociński in [1], will now be eliminated.

As Sobociński's system \mathcal{A} is not covered by I. Thomas's general construction in [4], we have to construct the model for \mathcal{A} differently as in [3]. However, the principle is the same.

Presupposing the knowledge of our paper [3], we construct the model as follows. Interpret

(1) Cpq as $[1 \div \alpha(X)] \cdot Y$; (2) Np as $S_1 \div X$; (3) Kpq as $\alpha(S_1 \div X) \cdot (X+Y) + [1 \div \alpha(S_1 \div X)] \cdot S_1$

and

(4) Apq as $[1 \doteq \alpha(1 \doteq X)] \cdot \{[1 \doteq \alpha(1 \doteq Y)] \cdot S_1 + [1 \doteq \alpha(S_1 \doteq Y)] \cdot S_0\}$ $+ [1 \doteq \alpha(S_1 \doteq X)] \cdot \{[1 \doteq \alpha(1 \doteq Y)] \cdot S_0 + [1 \doteq \alpha(S_1 \doteq Y)] \cdot S_1\}.$

We show that under this interpretation all axioms of \mathcal{A} become provable equations of **RAW**; as to the rules of inference of \mathcal{A} , RI is the rule of substitution of **RAW** and RII is interpreted as (2.22) of [3], i.e. is provable in **RAW**.

We now interpret every axiom. The numeration of axioms is the numeration of [1]; primed numbers denote equations of **RAW** corresponding to axioms of \mathcal{A} with the same unprimed number.

(F1). The corresponding equation in RAW is the equation (3.3) of [3], and was proved there.

(F2) CNpCpq. (F2)' $[1 \div \alpha(S_1 \div X)] \cdot [1 \div \alpha(X)] \cdot Y = 0$.

The easy proof of this equation is by recursion in X.

Received March 11, 1965