DECISION PROBLEM IN THE CLASSICAL LOGIC

EUGEN MIHĂILESCU

The important problem of decision in mathematical logic has been studied by many authors; it was resolved for propositional calculus. For functional calculus, Church demonstrated that there was no model by which we can determine whether a well-formed formula of the predicate calculus is true or false.

In classical logic a formula " α " is a tautology if for the propositional variables:

$$p_1, p_2, \ldots, p_n$$

in " α " we can make correspond the truth values:

$$a_1, a_2, \ldots, a_n$$

(where each of " a_i " are constant, $\mathbf{v} = true$, and $\mathbf{f} = false$) and the substitution of the variable p_i by a_i conduct to " α " true). In our paper we shall say that " α " is a tautology if its logical value is \mathbf{v} , where *logical value* of a formula means the result which we get making the substitution of the propositional variables by \mathbf{v} or \mathbf{f} in all possible ways and making all the operations connected.

The purpose of this article is to present a new method for the resolution of the decision problem, a method which is an immediate result of our studies on normal forms in propositional calculus. The work is treated in this way: I. For forms made with equivalence. II. For forms made with equivalence, negation, reciprocity. III. For forms made with equivalence, reciprocity and alternation. IV. For a general form of classical logic.

For all these we use the notation of J. $\pounds ukasiewicz$. The idea of form is defined in this way:

1. Each propositional variable is a form;

2. If " α " is a form and "F" is a unary functor, then "F α " is a form;

3. If " α " and " β " are forms and "F" is a binary functor, then " $F\alpha\beta$ " is a form. The set of the forms made by the means of the functors F_1, F_2, \ldots, F_n is to be written: $S(F_1, F_2, \ldots, F_n)$. For simplicity, we denote by S the set of all forms from classical logic. Two forms " α " and " β " are equipollent

Received May 29, 1965