Notre Dame Journal of Formal Logic Volume XIII, Number 2, April 1972 NDJFAM

A NOTE ON R-MINGLE AND SOBOCIŃSKI'S THREE-VALUED LOGIC

R. ZANE PARKS

The system **R**-Mingle (**RM**) of Dunn [2] is the result of adding the axiom schema $A \rightarrow A \rightarrow A$ to the system **R** of relevant implication-*cf*. Belnap [1]. Consider the matrices

<i>→</i>					&	0	1	2	v	0	1	2
0	2	2	2	2	0	0	0	0	0	0	1	2
*1	0	1	2	1	*1	0	1	1			1	
*2	0	0	2	0	*2	0	1	2	*2	2	2	2

The values 1 and 2 are designated. Since axioms of RM always take designated values and *modus ponens* and *adjunction* preserve this property, we have

Lemma 1. Theorems of RM uniformly take designated values when evaluated by the above matrices.

In [3], Sobociński proved that the system **S** based on the above matrices for \rightarrow and \sim is axiomatized by the following schemas together with *modus ponens*:

S1. $A \rightarrow B \rightarrow . B \rightarrow . C \rightarrow . A \rightarrow C$ **S2.** $A \rightarrow . A \rightarrow B \rightarrow B$ **S3.** $(A \rightarrow . A \rightarrow B) \rightarrow . A \rightarrow B$ **S4.** $A \rightarrow . B \rightarrow . \sim B \rightarrow A$ **S5.** $\sim A \rightarrow \sim B \rightarrow . B \rightarrow A$

Lemma 1, together with Sobociński's result, yields

Lemma 2. If A is a theorem of the pure theory of implication and negation of the calculus RM, then A is a theorem of S.

In as much as the axioms of **S** are theorems of RM (proofs are either routine or given in Dunn [2]) and *modus ponens* is a rule of RM, we have

Lemma 3. If A is a theorem of S, then A is a theorem of RM.

Received July 18, 1971