Notre Dame Journal of Formal Logic Volume XIII, Number 2, April 1972 NDJFAM

THE MODAL STRUCTURE OF THE PRIOR-RESCHER FAMILY OF INFINITE PRODUCT SYSTEMS

GERALD J. MASSEY

1. Prior-Rescher Family of Product Systems.* Let S be an arbitrary sentential system of *m*-valued truth-functional logic, $m \ge 2$. Following the notational conventions of Rescher ([6], p. 99), we mean by $\Pi_k(S)$ the truthfunctional system that is the k-fold product of S with itself. That is, the truth values of $\Pi_k(S)$ are the k-tuples of the truth values of S, and the semantics of $\Pi_k(S)$ is based on the semantics of S in the following way. Let \otimes be an *n*-ary connective. Then $\otimes(\langle \alpha_1^1, \ldots, \alpha_k^1 \rangle, \ldots, \langle \alpha_1^n, \ldots, \alpha_k^n \rangle)$ is $\langle \otimes (\alpha_1^1, \ldots, \alpha_1^n), \ldots, \otimes (\alpha_k^1, \ldots, \alpha_k^n) \rangle$. Rescher observes that there are two plausible ways to treat truth-value designation in $\Pi_k(S)$. One might regard a truth value $\langle \alpha_1, \ldots, \alpha_k \rangle$ as designated in $\prod_k(S)$ iff (a) each member of $\langle \alpha_1, \ldots, \alpha_k \rangle$ is designated in S, or iff (b) at least one member of $\langle \alpha_1, \ldots, \alpha_k \rangle$ is designated in S. Both alternatives lead to exactly the same theses for all the product systems discussed in this paper, so it is a matter of indifference which is chosen. For the sake of definiteness we adopt alternative (a). Again following Rescher's notation (*ibid.*), by $\Pi_{\aleph_0}(S)$ we mean the denumerable product of S with itself. That is, the truth values of $\Pi_{\aleph_0}(S)$ are the denumerable sequences $(\alpha_1, \alpha_2, \alpha_3, \ldots)$ of the truth values of S, and the semantics of $\Pi_{\aleph_0}(S)$ is based on that of S in the same way that the semantics of $\Pi_k(S)$ is based on the semantics of S.

In [6], p. 195, Rescher considers the family of systems $\Pi_k(S)^+$ and $\Pi_{\aleph_0}(S)^+$, which we call the *Prior-Rescher family of product systems*. In all these systems the underlying truth-functional logic S has a "truest" designated value t and a "falsest" nondesignated value f. One obtains $\Pi_k(S)^+$ by supplementing $\Pi_k(S)$ with the singulary operator \Box whose semantics is given as follows. The value of $\Box A$ is the k-tuple $\langle t, \ldots, t \rangle$ if the value of A is that same k-tuple; otherwise, the value of $\Box A$ is the k-tuple $\langle f, \ldots, f \rangle$. Similarly, one gets $\Pi_{\aleph_0}(S)^+$ by supplementing $\Pi_{\aleph_0}(S)$

^{*}Research supported by sabbatical leave from Michigan State University and by a 1969-70 Mellon Postdoctoral Fellowship at the University of Pittsburgh.