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CERTAIN COUNTEREXAMPLES TO THE CONSTRUCTION OF
COMBINATORIAL DESIGNS ON INFINITE SETS

WILLIAM J. FRASCELLA

The present note attempts to elaborate the main result of my paper
[1]. To this end the following definitions are necessary.*

Definition i . Let M be some fixed set and F and G families of subsets of M.
G is said to be a Steiner cover of F if and only if for every xeF there is
exactly one yeG such that x<z y.

Definition 21. Let k be a non-zero cardinal number such that k ** M. A
family F of subsets of M is called a k-tuple family of M if and only if i) if
x9ye Fsuch that x Φ y then x <£y and ii) if x e F then x = k.

As in [l] the result presented here will be given within Zermelo-
Fraenkel set theory with the axiom of choice. If x is a set, x denotes the
cardinality of x. If n is a cardinal number then [x]*n = {yc x :y * n) where *
can stand for the symbols =, ̂ , ^, < or >. The expression "x c y means
"# is a subset of y" improper inclusion not being excluded. If a is an
ordinal number ωαis the smallest ordinal whose cardinality is Kβ. As usual,
we write ω for ω0. For each ordinal a we define a cardinal number αα by
recursion as follows: set αo= No. If α = 0+1 then set αα = 2α0. If a is a
limit number then set αβ = Σ α̂ . Also for any ordinal α, cf(a) represents

β<a

the smallest ordinal which is cofinal with a.
It is now possible to state the main result of [1] as follows.

Theorem 3. In every set M of cardinality αω there is an Ko- tuple family F
of M such that there does not exist a family G c[M]^i which is a Steiner
cover of F.

The following will be the principal content of the present note.

Theorem 4. Let a,β and γ be ordinal numbers such that i) a < β < γ9 ii) γ is
a limit number, iii) cf(ωy) ^ ωa < cf(ωβ), iv) ifδ<γ then $*a < κ y and
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