Notre Dame Journal of Formal Logic
Volume XII, Number 3, July 1971 NDJFAM

TWO NOTES ON VECTOR SPACES WITH RECURSIVE OPERATIONS

J. C. E. DEKKER

In [1] the author studied an \aleph_{0}-dimensional vector space \bar{U}_{F} over a countable field F; it consists of an infinite recursive set ε_{F} of numbers (i.e., non-negative integers), an operation + from $\varepsilon_{F} \times \varepsilon_{F}$ into ε_{F} and an operation - from $F \times \varepsilon_{F}$ into ε_{F}. If the field F is identified with a recursive set, both + and are partial recursive functions. Let β be a subset of ε_{F}. We call β a repère, if it is linearly independent; β is an α-repère, if it is included in a r.e. repère. A subspace V of \bar{U}_{F} is an α-space, if it has at least one α basis, i.e., at least one basis which is also an α-repère. We write c for the cardinality of the continuum. It can be shown [1, pp. 367, 385, 386 and $2, \S 2$] that among the c subspaces of \bar{U}_{F} there are c which are α-spaces and c which are not. The present paper* contains improvements of two results obtained in [1]. Henceforth the notations and terminology of [1] will be used.

1. HAMILTON'S THEOREM. Every two α-bases of an isolic α-space are recursively equivalent. This result [1, p. 375, Corollary 2] was strengthened by A. G. Hamilton [2] to:
every two α-bases of any α-space are recursively equivalent.
This means that $\operatorname{dim}_{\alpha} V$ can be defined for any α-space V. The following proof is shorter than Hamilton's; it is a modification of the proof of T1 in [1].

Proof. Let β and γ be α-bases of the α-space V, say $\beta \subset \bar{\beta}, \gamma \subset \bar{\gamma}$, where $\bar{\beta}$ and $\bar{\gamma}$ are r.e. repères. If V is finite-dimensional we are done, hence we suppose that $\operatorname{dim} \quad V=\aleph_{0}$; thus $\beta, \bar{\beta}, \gamma$ and $\bar{\gamma}$ are infinite sets. We have $V=L(\beta)=L(\gamma), V \leq L(\bar{\beta}), V \leq L(\bar{\gamma})$. Note that $L(\bar{\beta})$ need not equal $L(\bar{\gamma})$. There is no loss of generality in assuming that $\bar{\beta} \subset L(\bar{\gamma})$. For suppose this were not the case; take $\beta_{0}=\bar{\beta} \cap L(\bar{\gamma})$; then $\beta \subset \beta_{0}$, where β_{0} is a r.e. repère included in $L(\bar{\gamma})$. Assume therefore that $\bar{\beta} \subset L(\bar{\gamma})$. Put $\gamma^{*}=\bar{\gamma} \cap L(\bar{\beta})$, then

$$
\beta \subset \bar{\beta} \subset L(\bar{\gamma}), \gamma \subset \gamma^{*} \subset \bar{\gamma}, \gamma^{*} \subset L(\bar{\beta})
$$

[^0]
[^0]: *Research supported by NSF grant GP-20134.

