INCOMPLETENESS VIA SIMPLE SETS

ERIK ELLENTUCK

Let P be Peano arithmetic and let Σ_0 be the set of formulas in the language of P which only contain bounded quantifiers. It is well known that if Q is an ω -consistent extension of P, and Q(x) is a Σ_0 -formula, then

(1) $Q \vdash (\exists x) \phi(x) \text{ implies } Q \vdash \phi(\mathbf{n}) \text{ for some } n < \omega$.

What we show here is that by only slightly more complicating the form of ϕ , (1) will fail in every consistent axiomatizable extension of P.* In detail

Theorem: There is a Σ_0 -formula $\phi(x,y,z)$ such that for any consistent axiomatizable extension Q of P there is a $q < \omega$ such that $Q \vdash (\exists x) (\forall y) \phi(x,y,\mathbf{q})$, but for no $n < \omega$ does $Q \vdash (\forall y) \phi(\mathbf{n},y,\mathbf{q})$.

(Note that under these hypotheses (1) above implies our result is the best possible.)

Proof: Let S be the simple set of Post (cf. [1] p. 106). We define S in terms of the Kleene predicate T (which enumerates the n-th recursively enumerable set as $\{m: (\exists u) \ T(n,m,u)\}$), the pairing function j, and its first, second inverse k,l.

- (2) $F(m,n) \equiv (\exists u) [(T(n,m,u) \land m > 2n) \land (\forall v) ((v < j(m,u) \land T(n,k(v),l(v)) \rightarrow k(v) \leq 2n)]$
- (3) $S(m) \equiv (\exists n) F(m, n)$

Let $\phi(y,x)$, $\sigma(y)$ be the intuitive translations of F, S into the language of P and let Q be any consistent axiomatizable extension of P. F is a partial recursive function (in the n to m direction) which is represented in P (á fortiori Q) by

(4) F(m, n) implies $Q \vdash \phi(m, n)$,

and

(5) $Q \vdash (\phi(y, x) \land \phi(z, x)) \rightarrow y = z$.

^{*}Prepared while the author was partially supported by NSF contract GP-11509.