A TABLEAU PROOF METHOD ADMITTING THE EMPTY DOMAIN

MELVIN FITTING

1 Introduction. There have been several papers concerning systems of first order logic whose theorems are valid in all domains including the empty one. Some, for example, [1, 2] do not admit vacuous quantification. If vacuous quantification is allowed, two definitions of validity in the empty domain are possible, depending on how vacuous quantification is interpreted. Mostowski [5] interprets ($\forall x$) A, where x does not occur free in A, as equivalent to A; Hailperin [3] and Quine [6] interpret $(\forall x) A$ as true over the empty domain. All the preceeding proof systems are axiomatic, however see [4] for a natural deduction system.

In this paper we present simple and intuitive modifications of the tableau proof system of [8] (allowing vacuous quantification): one which produces a logic equivalent to that of Hailperin and Quine, and one which produces a logic equivalent to Mostowski's. We first sketch the classical system, then we present our modifications and sketch proofs of correctness and completeness.

2 The Classical Tableau System. We use x, y, z, \ldots for individual variables (free and bound); a, b, c, \ldots for individual parameters; and A, B, C, \ldots to represent formulas. The notion of formula is defined as usual, allowing vacuous quantification. By $A(x / a)$ we mean the result of substituting the parameter a for every free occurrence of the variable x in A. A formula with no free variables is called a closed formula, or a sentence. A formula with no parameters is called pure.

We use the unified notation of Smullyan [7, 8] in which α stands for any essentially conjunctive formula, β for any disjunctive, γ for any universal formula, and δ for any existential. In the charts below we list the four α forms, and give the respective components, denoted α_{1} and α_{2}, and the three β forms and their respective components, denoted β_{1} and β_{2}.

α	α_{1}	α_{2}
$A \wedge B$	A	B
$\sim(A \vee B)$	$\sim A$	$\sim B$
$\sim(A \supset B)$	A	$\sim B$
$\sim \sim A$	A	A

β	β_{1}	β_{2}
$A \vee B$	A	B
$\sim(A \wedge B)$	$\sim A$	$\sim B$
$A \supset B$	$\sim A$	B

