Notre Dame Journal of Formal Logic Volume XII, Number 2, April 1971

A TABLEAU PROOF METHOD ADMITTING THE EMPTY DOMAIN

MELVIN FITTING

1 Introduction. There have been several papers concerning systems of first order logic whose theorems are valid in all domains including the empty one. Some, for example, [1, 2] do not admit vacuous quantification. If vacuous quantification is allowed, two definitions of validity in the empty domain are possible, depending on how vacuous quantification is interpreted. Mostowski [5] interprets $(\forall x)A$, where x does not occur free in A, as equivalent to A; Hailperin [3] and Quine [6] interpret $(\forall x)A$ as true over the empty domain. All the preceeding proof systems are axiomatic, however see [4] for a natural deduction system.

In this paper we present simple and intuitive modifications of the tableau proof system of [8] (allowing vacuous quantification): one which produces a logic equivalent to that of Hailperin and Quine, and one which produces a logic equivalent to Mostowski's. We first sketch the classical system, then we present our modifications and sketch proofs of correctness and completeness.

2 The Classical Tableau System. We use x, y, z, ... for individual variables (free and bound); a, b, c, ... for individual parameters; and A, B, C, ... to represent formulas. The notion of formula is defined as usual, allowing vacuous quantification. By A(x/a) we mean the result of substituting the parameter a for every free occurrence of the variable x in A. A formula with no free variables is called a closed formula, or a sentence. A formula with no parameters is called pure.

We use the unified notation of Smullyan [7, 8] in which α stands for any essentially conjunctive formula, β for any disjunctive, γ for any universal formula, and δ for any existential. In the charts below we list the four α forms, and give the respective components, denoted α_1 and α_2 , and the three β forms and their respective components, denoted β_1 and β_2 .

α			β	β_1	β_2
$\begin{array}{c} A \land B \\ \sim (A \lor B) \end{array}$	Α	В	$\begin{array}{c} A \lor B \\ \thicksim(A \land B) \end{array}$	A	В
~(A v B)	$\sim A$	$\sim B$	$\sim (A \land B)$	~A	~ <i>B</i>
$\sim (A \supset B)$	A	$\sim B$	$A \supset B$	$\sim A$	B
$\sim \sim A$	A	A			•

Received July 18, 1969