Notre Dame Journal of Formal Logic Volume XI, Number 4, October 1970

A NOTE ON THE INTUITIONIST FAN THEOREM

W. RUSSELL BELDING

The purpose of this note is to point out that the Intuitionist Fan Theorem as stated in the literature mentioned is classically false. A classical counterexample to the Theorem is given. It is pointed out that the modified Fan Theorem does not give rise to a classical contradiction mentioned in Heyting [5].

The usual statement of the Fan Theorem* is, following [5],

If S is an Intuitionist fan and φ an integer valued function defined for every element δ of S then a natural number N can be computed for $\langle S, \varphi \rangle$ such that for any element δ of S, $\varphi(\delta)$ is determined by the first N components of δ .

We refer to this as the weak theorem. The counter example we presently introduce leads us to modify the above statement to the strong theorem,

If S is an Intuitionist fan and φ an integer valued function defined for every element δ of S such that $\varphi(\delta)$ is determined by a finite number of components of δ , then a natural number N can be computed such that for any element δ of S, $\varphi(\delta)$ is determined by the first N components of δ .

Consider the fan S whose elements are infinitely proceeding sequences (ips) $\{d_n\}$. The spread law SL is as follows:

- (i) 0 is an admissible 1-sequence,
- (ii) 0, 1 are admissible n-components for any $n \ge 2$, that is, given an admissible (n 1)-sequence d_1, \ldots, d_{n-1} , we may choose $d_n = 0$ or $d_n = 1$ subject to
- (iii) if $d_{n-1} = 1$ then $d_n = 1$ for any $n \ge 2$.

The complementary law CL, assigns to any admissible *n*-sequence d_1 , d_2, \ldots, d_n , the number d_n . Clearly S is a fan and may be represented by the following tree:

*See: [1] p. 430; [2], p. 462; [3], p. 143; [4], p. 15; and [5], p. 42.

Received May 6, 1969