ON A PROBLEM OF TH. SKOLEM

JOHN H. HARRIS

1. Introduction. As pointed out in [2] the standard definition of an ordered pair, viz. $\langle x, y\rangle=\{\{x\},\{x, y\}\}$, does not generalize in a natural way to ordered n-tuples. For example, the candidate $\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\{\left\{x_{1}\right\},\left\{x_{1}, x_{2}\right\}\right.$, $\left.\left\{x_{1}, x_{2}, x_{3}\right\}\right\}$ is no good since this gives $\langle x, y, y\rangle=\langle x, x, y\rangle$. The standard generalization to n-tuples is given by $\left\langle x_{1}\right\rangle=x_{1},\left\langle x_{1}, \ldots, x_{n+1}\right\rangle=\left\langle\left\langle x_{1}, \ldots, x_{n}\right\rangle\right.$, $\left.x_{n+1}\right\rangle$. However, this definition has the unusual property that every n-tuple is also an m-tuple for $2 \leq m \leq n$. Also if x_{1}, x_{2}, x_{3} are of type k in simple type theorem, then $\left\langle x_{1}, x_{2}\right\rangle$ is of type $k+2$, hence $\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle\left\langle x_{1}, x_{2}\right\rangle, x_{3}\right\rangle$ is not type-theoretically well-defined.

The generalizations proposed in [2] are rather awkward in form. In this paper we offer several solutions to Skolem's problem of finding a "best"' definition for ordered n-tuples. The idea is to start with some new definitions of "ordered pair" which in turn do generalize in several natural ways, the 'best" choice depending upon what conditions we wish ordered n-tuples to satisfy. Some possible conditions are as follows:
(C1) $\left\langle x_{1}, \ldots, x_{n}\right\rangle=\left\langle y_{1}, \ldots, y_{n}\right\rangle \Longrightarrow x_{i}=y_{i}$ for $1 \leq i \leq n$;
(C2) all n-tuples ($n \geq 2$) are actually 2 -tuples;
(C3) $m \neq n \Longrightarrow\left\langle x_{1}, \ldots, x_{m}\right\rangle \neq\left\langle y_{1}, \ldots, y_{n}\right\rangle$;
(C4) in simple type theory, if x_{1}, \ldots, x_{n} are of the same type, then $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is well-defined.

Of course we want all definitions to satisfy C1. Conditions C2 and C3 are clearly mutually exclusive. C2 is a property possessed by the standard definition of ordered n-tuples, whereas C3 is closer to the intuitive notion of n-tuples. Condition C4 was considered in [2].

Let T_{0} be a pure set or set-class theory satisfying the axioms of extensionality and pair set, $T_{1}=T_{0}+$ null set axiom, and $T_{2}=T_{1}+$ adjoining set axiom $(x, y \in \vee \Longrightarrow x \cup\{y\} \in \mathrm{V}$). Small Roman letters denote set variables. Finally, let $x^{[0]}=x, x^{[n+1]}=\left\{x^{[n]}\right\}$ for $n \geq 0$.
2. First Definition. Consider the basic definition $\langle x, y\rangle=\{\{\varnothing, x\},\{y\}\}$ which trivially satisfies C 1 for case $n=2$. Several possible generalizations are now defined.

