Notre Dame Journal of Formal Logic Volume XI, Number 3, July 1970

A NOTE ON A LEMMA OF J. W. ADDISON

RICHARD L. POSS

In [2] J. W. Addison, under the assumption of the axiom of constructibility, proved the following proposition:¹

(C¹) There exists an ω_1 well-ordering $< of N^N$ such that for any subset C of N^N and any predicate R recursive in functions in C, the set $\hat{a}\hat{\beta}(E\beta_1)_{\beta_1<\beta}(E\alpha)(x)R(a,\beta_1,\alpha,x)$ is in $\Sigma_2^1[C] \cap \Pi_2^1[C]$.

In his proof of (C^1) Addison used V = L only in the proof of the following lemma (1.3). If we define:

(1.0) $W(\phi) \equiv \phi(i, j) = 0$ well orders N,

(1.1) ϕ_i = the ordinal number corresponding to *i* in the well-ordering $\phi(i, j) = 0$,

(1.2) $M(\phi, \varepsilon) \equiv W(\phi) \& \varepsilon(i, j) = 0 \equiv \mathbf{F}' \phi_i \epsilon \mathbf{F}' \phi_j$

and if we let \leq be the ω_1 well-ordering of N^N defined by

 $\alpha < \beta$ if and only if the least ordinal ν such that $\omega \times \omega \cdot \mathbf{F'}\nu = \alpha$ is less than the first ordinal μ such that $\omega \times \omega \cdot \mathbf{F'}\mu = \beta$,

then we have:

L(1.3)
$$(E\beta_{1})_{\beta_{1} < \beta} (E\alpha)(x)R(\alpha, \beta_{1}, \alpha, x)$$

$$\equiv (E\beta_{1})[(E\phi)(E\varepsilon)[M(\phi, \varepsilon) \& (Ei)[\omega \times \omega \cdot F'\phi_{i} = \beta_{1}]$$

$$\&\sim (Ei)[\omega \times \omega \cdot F'\phi_{i} = \beta]] \& (E\alpha)(x)R(\alpha, \beta_{1}, \alpha, x)]$$

$$\equiv (\phi)(\varepsilon)[M(\phi, \varepsilon) \& (Ei)[\omega \times \omega \cdot F'\phi_{i} = \beta] \rightarrow (E\beta_{1})[\beta_{1} \neq \beta \& (Ei)[\omega \times \omega \cdot F'\phi_{i} = \beta_{1}]$$

$$\& (E\alpha)(x)R(\alpha, \beta_{1}, \alpha, x)]].$$

We will show that L(1.3) can be proved under the weaker assumption that all real numbers are constructible $(N^N \subset L)$ and that in fact L(1.3) is equivalent to $N^N \subset L$.² Thus we have the weakest assumption under which Addison's method can be used to prove (C¹).

Theorem $N^{N} \subset L \equiv$ there exists an ω_{1} well-ordering \leq of N^{N} such that L(1.3) holds.

Proof: The last two formulas of L(1.3) are equivalent by logic, so it

Received December 5, 1969