220 Notre Dame Journal of Formal Logic Volume XI, Number 2, April 1970

CORRIGENDUM TO OUR PAPER:

"A THEOREM ON *n*-TUPLES WHICH IS EQUIVALENT TO THE WELL-ORDERING THEOREM"

H. RUBIN and J. E. RUBIN

In the original paper¹ the last part of the proof of Theorem 1 was incorrect. (The error was called to our attention by J. D. Halpern. See p. 49, lines 2-9). We correct it as follows: If k_{γ} is not a subset of any element of T_{γ} , let t'_{γ} be the smallest element s of T such that $k_{\gamma} \subseteq s$, but for all $\beta < \gamma$, $k_{\beta} \not\subseteq s$, and for all $\beta > \gamma$, if there is an $r \in T$ such that $k_{\beta} \subseteq r$ then $k_{\beta} \not\subseteq s$.

An example of such an s is $s = k_{\gamma} \cup \{u_1, \ldots, u_{n-k}\}$ where the u_i 's are distinct elements of $y = x \sim (\bigcup T_{\gamma} \cup k_{\gamma})$. The set y is infinite because $\bigcup T_{\gamma} \cup k_{\gamma} < \omega_{\alpha} \approx x$. Then, clearly $k_{\gamma} \subseteq s$, and if either $\beta < \gamma$, or if $\beta > \gamma$ and $k_{\beta} \subseteq r \in T_{\gamma}$, then $k_{\beta} \subseteq \bigcup T_{\gamma}$ so $k_{\beta} \notin s$. Now, if k_{γ} is not a subset of any element of T_{γ} , define $T_{\gamma+1} = T_{\gamma} \cup \{t'_{\gamma}\}$.

Now, if k_{γ} is not a subset of any element of T_{γ} , define $T_{\gamma+1} = T_{\gamma} \cup \{t'_{\gamma}\}$. If γ is a limit ordinal define $T_{\gamma} = \bigcup_{\beta < \gamma} T_{\beta}$. Then $N = \bigcup_{\gamma < \omega_{\alpha}} T_{\gamma}$ is the required set.

Purdue University Lafayette, Indiana

¹The paper was published in this Journal, Vol. VIII (1967), pp. 48-50.