AFFINE GEOMETRY WITH S. DOWDY'S ‘‘TRAPEZOID’’ AS PRIMITIVE

ROBERT E. CLAY

In [1] S. Dowdy introduces an axiom system for affine geometry based on the primitive $t(A B C D)$ which intuitively means that A, B, C, D are the vertices of a trapezoid. In this paper the system is first simplified and then altered slightly so that the defined terms which appear in the axioms can be eliminated and still produce a "reasonable" looking system. A system in which $\mathrm{c}(A B C), A, B, C$ are collinear, is the only relation which appears is then given.

The system \mathbf{T} which appears in this paper is Dowdy's A^{*} in [1]. System \mathbf{T}^{\prime} is derived from \mathbf{T} by the following simplifications: Two disjuncts are removed from $D 2$, one conjunct is removed from the last disjunct of $D 3, A 3$ is eliminated, the equivalence in $A 4$ is replaced by an implication, $A 5$ is replaced by a shorter simpler axiom, and a conjunct is removed from the antecedent of $A 8$. System $T^{\prime \prime}$ is obtained from T^{\prime} by shortening and at the same time strengthening the definition of collinearity so that $A 5^{\prime}$, the transitivity of collinearity, follows from $A 6$, the transitivity of parallelism. The theses prefixed with an L are to be found in [1], pp. 245-255.

1. SYSTEM T

```
D1 [A]:A&\alpha.\equiv.[\exists}BCD].t(ABCD
D2 [AB]..r(AB).#:[7]CD]:t (ABCD).v.t(ACBD).v.t(CBAD)
D3 [ABC].\thereforec(ABC).\equiv:r(BC):A=B.v.A=C .v.[\existsXY].t(BCXY).t(BAXY).
t(CAXY)
A1 [G ABCD].t(ABCD)
A2 [ABCD]:t (ABCD).\supset. A\not=B
A3a [ABCD]:\mathbf{t}(ABCD).D.t(DCAB)
A3b [ABCD]:t (ABCD).D.t(ABDC)
A4 [ABC]::A\varepsilon\alpha.B\varepsilon\alpha.C\varepsilon\alpha.\supset.. ~c(CAB):\equiv:[弓] [.t (ABCD).v.A = B
A5 [ABCMN]:A\not=B.c(AMN).c(BMN).c(CMN).\supset.c(CAB)
A6 [ABCDEFG]:t(ABCD).t(ABEF).t(CDEG).\supset.t(CDEF)
```

