Notre Dame Journal of Formal Logic Volume XI, Number 1, January 1970

A PROOF OF THE LÖWENHEIM-SKOLEM THEOREM

GEORGE S. BOOLOS

A modification of the proof procedure described in the appendix to Quine's *Methods of Logic* (revised edition) yields a simple $proof^1$ of a strong version of the Löwenheim-Skolem Theorem:

Any interpretation has an elementarily equivalent subinterpretation whose universe is countable.

(I is a subinterpretation of J if the universe of I is a subset of that of J, I assigns any (free) variable the same denotation as J, and I assigns any predicate letter the restriction to its own universe of whatever J assigns it. Two interpretations are elementarily equivalent if the same schemata are true under both.)

Proof. Let J be an interpretation, S_1, S_2, S_3, \ldots an enumeration of all and only the prenex schemata true under J, and v_1, v_2, v_3, \ldots an infinite non-repeating sequence of variables² none of which occurs in any S_i . We suppose all bound variables in the S_i s to have been relettered so that no variable occurs bound in some S_i and free in some S_j . We further suppose S_1 to begin with an existential quantifier. We form an (infinite) list of schemata by writing down S_1 , then applying EI as many times as we can, then applying UI as many times as we can, then writing down S_2 , then applying EI as many times as we can, then applying UI as many times as we can, then writing down S_3 , then applying \ldots . In forming the list, we never

76

^{1.} Our proof of the strong version stated above proceeds by a route somewhat different from that taken by the classical proofs, [2] and [3], in that we avoid the use of "Skolem normal forms" for satisfiability, and do not (apparently) close a countable (= finite or countably infinite) set under all Skolem functions for all prenex sentences true under the original interpretation. The method we have used can be extended to give a proof of the sill stronger version of the theorem stated in [3]: Any interpretation has an elementary subinterpretation whose universe is countable.

^{2.} Each v_i is alphabetically later than any variable in any S_j ; if n > m, v_n is alphabetically later than v_m . Cf. [1], p. 164.