Notre Dame Journal of Formal Logic Volume X, Number 3, July 1969

AN EXTENSION OF NEGATIONLESS LOGIC

J. KENT MINICHIELLO

\$1. Nelson [1] has provided a formalization of part of Griss' negationless mathematics [2]. The logic Nelson devised uses a quantified implication $(A \supset \overline{x} B)$ and a quantified disjunction $(\sum \overline{x}(A_1, \ldots, A_n))$ as well as $\&, \forall$, and \exists . These connectives do not exhaust the possibilities for rendering each provable sequent of Nelson's \mathbf{P}_1 system as a provable formula: when given a sequent $A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n$, we lack a corresponding closed formula to be read negationlessly as 'for all x_1, \ldots, x_k if A_1 and \ldots and A_m , then B_1 or \ldots or B_n .'' Further, in Nelson's two most restricted predicate calculi there is no obvious way of forming Griss negation in several variables. If \neq is a distinguishability relation and $P(t_1, \ldots, t_n)$ is a formula in which x_1, \ldots, x_n do not occur, then the Griss negation of $P(t_1, \ldots, t_n)$ should be read ''for all x_1, \ldots, x_n if $P(x_1, \ldots, x_n)$ then $x_1 \neq t_1$ or \ldots or $x_n \neq t_n$.''

We have defined a general connective which provides the lacking notation [3]. Using the notation of [1] we give the definition and introduction rules for this connective. Let \overline{x} be a non-empty list of distinct variables, Ψ a (possible empty) list of formulas, and Φ a non-empty list of formulas: then ($\Psi \supset \overline{x} \Phi$) is a formula. Introduction rules suitable to $P_2 - A_2$ are

$$\frac{\Gamma,\Pi(\overline{x}) \to \Psi(\overline{x}) | \Gamma \to (\exists \overline{z})(\Pi(\overline{z})_1 \& \dots \& \Pi(\overline{z})_m) | \Gamma \to (\exists \overline{z})\Psi(\overline{z})_1 | \dots | \Gamma \to (\exists \overline{z})\Psi(\overline{z})_n}{\Gamma \to (\Pi(\overline{z}) \supset \overline{z} \Psi(\overline{z}))}$$

and

$$\frac{\Sigma \to A_1(\overline{t}), \wedge |\ldots| \Sigma \to A_m(\overline{t}), \wedge |B_1(\overline{t}), \Omega \to \Phi |\ldots| B_n(\overline{t}), \Omega \to \Phi}{(A_1(\overline{x}), \ldots, A_m(\overline{x}) \supset \overline{x} B_1(\overline{x}), \ldots, B_n(\overline{x})), \Sigma, \Omega \to \Lambda, \Phi}$$

in which Γ does not contain any of \overline{x} free, each variable of \overline{x} (term of \overline{t}) is free for the corresponding variable of \overline{z} (\overline{x}) in each formula of $\Pi(\overline{z}), \Psi(\overline{z})$ $(A_1(\overline{x}), \ldots, B_n(\overline{x}))$, if $\Pi(\overline{x})$ $(A_1(\overline{t}), \ldots, A_m(\overline{t}))$ is empty then the premise(s) not involving $\Psi(\overline{x})$ $(B_1(\overline{t}), \ldots, B_n(\overline{t}))$ is (are) omitted, $\Pi(\overline{x})$ is a list of mformulas, $\Psi(\overline{x})$ is a non-empty list of n formulas, etc. An additional premise

Received June 15, 1968

298