Notre Dame Journal of Formal Logic Volume X, Number 3, July 1969

ON A MODAL SYSTEM OF D. C. MAKINSON AND B. SOBOCIŃSKI

G. F. SCHUMM

It is well-known that if N, K and M are taken as primitive, with C and L defined in the usual manner, the theses of Prior's Diodorean system D = S4.3 + $CLCLCpLppCMLpp^{1}$ can be characterized as those, and only those, formulas verified by the matrix $\mathfrak{P} = \langle V, d, -, \cap, P \rangle$, where:

- 1. V is the set of all ω sequences (x_0, x_1, \ldots) of 0's and 1's.
- 2. d is the designated element (1, 1, 1, ...) of V.
- 3. and \cap are operations in V defined in pointwise fashion from the familiar Boolean operations and \cap in $\{0, 1\}$.
- 4. P is the operation in V such that if $(x_0, x_1, \ldots) \in V$, then $P(x_0, x_1, \ldots) = (y_0, y_1, \ldots)$ where, for each $i, y_i = 1$ iff $x_j = 1$ for some $j \ge i$.
- In [2], Makinson observes that if 4. is replaced by
- 5. P^* is the operation in V such that if $(x_0, x_1, \ldots) \in V$, then $P^*(x_0, x_1, \ldots) = (y_0, y_1, \ldots)$ where, for each $i, y_i = 1$ iff $x_j = 1$ for some $j \le i$.

then D*, defined as the system for which the resulting matrix $\mathbb{P}^* = \langle V, d, -, \cap, P^* \rangle$ is characteristic, is a proper extension of D and, like D, admits of a very natural tense-logical interpretation.

We here show that D^* can be axiomatized and is equivalent to the system K3.1 = S4.3 + *CLCLCpLppp* discussed by Sobociński in [4]. To this end, let S = D + CLMpMLp. It is readily established that $S \subseteq K3.1 \subseteq D^*$ —use the known fact that *CLMpMLp* is a thesis of K3.1 and note that *CLCLCpLppp* and *CpCMLpp* yield *CLCLCpLppCMLpp*—and so it will suffice to show that $D^* \subseteq S$.

Suppose $\gamma_1, \ldots, \gamma_m$ are the subformulas of α . Then for each γ_i , we put $\beta_i = MKC \gamma_i L \gamma_i CN \gamma_i LN \gamma_i$ and let β be the conjunction of all β_i 's. Where μ is any assignment into \mathbb{P} or \mathbb{P}^* and $\mu(\delta) = (x_0, x_1, \ldots)$, we let $\mu_j(\delta) = x_j$.

Lemma 1. If $\vdash_{\mathbf{D}} C\beta \alpha$, then $\vdash_{\mathbf{S}} \alpha$.

Proof. Using the matrix \mathfrak{P} it is easily checked that CCLMpMLpMKCpLpCNpLNp is a thesis of D and therefore of S. Then since $\vdash_{S} CLMpMLp$, we