MODAL SYSTEMS IN WHICH NECESSITY IS "FACTORABLE"

J. JAY ZEMAN

We will say that necessity is "factorable" in a modal system S if there are modal functions X_1p, \ldots, X_np-L itself being none of the X_i -such that in S the conjunction $KX_1pKX_2p\ldots X_np$ is equivalent to Lp. For the systems discussed in this paper, n in the above formulas will be 2 and X_1p will be simply p. An obvious example of a system in which necessity is factorable is the system S4.4, which contains as a thesis

$$EKpMLpLp.$$

We shall redirect our attention to S4.4 later on in this paper.

1. S images in the S° systems. We shall now show that by considering the operator usually read as "necessity" in the systems $S1^{\circ}-S4^{\circ}$ to be a factor of necessity rather than necessity itself, we may find in each of these systems an image of its respective (without the ") ordinary Lewis-modal system. As bases for $S1^{\circ}-S4^{\circ}$, we may use the C-N-L formulations of [1]; for our present purposes, however, let us employ for these systems the letter Q in place of L, and reserve L for the necessity operator in the "images" we will discover in $S1^{\circ}-S4^{\circ}$. In all of these systems, then, we will define L and M as follows:

Df. L: $L\varphi$ for $K\varphi Q\varphi$

Df. M: $M\varphi$ for $ANQN\varphi\varphi$

Axioms and rules for the systems will be drawn from the following stock, as in [1], with Q read for L:

J1a. CQCpCqrQCQpCQqQr

J1b. CQCpqCQpQq

J2. CKQCpqQCqrQCpr

Ja. If $\vdash \varphi$, then $\vdash Q\varphi$.

Jb. If φ is an axiom or PC theorem, $\vdash Q\varphi$.

Jc. If $\vdash QC\varphi\psi$, then $\vdash QCQ\varphi Q\psi$.

Jd. If $\vdash QC\varphi\psi$ and $\vdash QC\varphi\psi$, then $\vdash QCQ\varphi Q\psi$

Je. If $\vdash Q \varphi$, then $\vdash \varphi$.