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MODAL SYSTEMS IN WHICH NECESSITY IS "FACTORABLE"

J. JAY ZEMAN

We will say that necessity is "factorable" in a modal system S if there
are modal functions Xip, . . . , Xnp— L itself being none of the Xi — such
that in S the conjunction KX1pKX2p . . . Xnp is equivalent to Lp. For the
systems discussed in this paper, n in the above formulas will be 2 and X1p
will be simply p. An obvious example of a system in which necessity is
factorable is the system S4.4, which contains as a thesis

(1) EKpMLpLp.

We shall redirect our attention to S4.4 later on in this paper.

1. S images in the S ° systems. We shall now show that by considering the
operator usually read as "necessity" in the systems Sl°-S4° to be a factor
of necessity rather than necessity itself, we may find in each of these
systems an image of its respective (without the ίO') ordinary Lewis-modal
system. As bases for Sl°-S4°, we may use the C-N-L formulations of [l];
for our present purposes, however, let us employ for these systems the
letter Q in place of L, and reserve L for the necessity operator in the
"images" we will discover in Sl°-S4°. In all of these systems, then, we
will define L and Mas follows:

Df. L: Lφ for Kφ Qφ

Df. M: Mφ for ANQNφ φ

Axioms and rules for the systems will be drawn from the following stock,
as in [l], with Q read for L:

Jla. CQCpCqrQCQpCQqQr
Jib. CQCpqCQpQq
J2. CKQCpqQCqrQCpr
Jα. If hφ, then hQφ.
Jb. If φ is an axiom or PC theorem, \-Qφ.
Jc. // hQCφψ, then \-QCQφ Qψ.
Jd. // ϊ-QCφψ and \-QCφψ, then t-QCQφQψ
Je. Ifl-Qφ, then \-φ.
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