Notre Dame Journal of Formal Logic Volume X, Number 1, January 1969

A FORMALISATION OF THE ARITHMETIC OF THE ORDINALS LESS THAN ω^ω

H. P. WILLIAMS

Some of the results of ordinal arithmetic can be derived from a multi-successor equation calculus. The initial functions are:

- (i) the zero function N(x) = 0
- (ii) the identity function I(x) = x.

These two functions are implicit. In addition there are:

(iii) a countable number of successor functions S_0 , S_1 , S_2 , ...

The successor functions are restricted by the axioms

A
B

$$S_{\mu}S_{\nu} = S_{\mu} \text{ if } \mu > \nu$$

 $S_{a}S_{b} \dots S_{q} = S_{a}'S_{b}' \dots S_{q}$

with $a \le b \le \ldots \le q$ and $a' \le b' \le \ldots \le q'$ if and only if $a = a', b = b', \ldots q = q'$.

A function may be defined explicitly, or by recursion in the following way

$$F(x, 0) = a(x) F(x, S_{\mu} y) = b_{\mu}(x, y, F(x, y))$$

from previously defined functions a(x) and $b_{\mu}(x, y, z)$ (for all μ) if the b_{μ} obey the following identity imposed by **A**:

C
$$b_{\mu}(x, S_{\nu}y, b_{\nu}(x, y, z)) = b_{\mu}(x, y, z)$$
 if $\nu < \mu$,

The rules of inference are the following schemata

Sb₁

$$\frac{F(x) = G(x)}{F(A) = G(A)}$$
Sb₂

$$\frac{A = B}{F(A) = F(B)}$$

Received October 30, 1967