Notre Dame Journal of Formal Logic
Volume X, Number 1, January 1969

A FORMALISATION OF THE ARITHMETIC OF THE
 ORDINALS LESS THAN ω^{ω}

H. P. WILLIAMS

Some of the results of ordinal arithmetic can be derived from a multi-successor equation calculus. The initial functions are:
(i) the zero function $\mathrm{N}(x)=0$
(ii) the identity function $I(x)=x$.

These two functions are implicit. In addition the re are:
(iii) a countable number of successor functions $S_{0}, S_{1}, S_{2}, \ldots$ The successor functions are restricted by the axioms

A	$S_{\mu} S_{\nu}=S_{\mu}$ if $\mu>\nu$
B	$S_{a} S_{b} \ldots S_{q}=S_{a}{ }^{\prime} S_{b}{ }^{\prime} \ldots S_{q}{ }^{\prime}$

with $a \leq b \leq \ldots \leq q$ and $a^{\prime} \leq b^{\prime} \leq \ldots \leq q^{\prime}$ if and only if $a=a^{\prime}, b=b^{\prime}$, $\ldots q=q^{\prime}$.

A function may be defined explicitly, or by recursion in the following way

$$
\begin{aligned}
F(x, 0) & =a(x) \\
F\left(x, \mathrm{~S}_{\mu} y\right) & =b_{\mu}(x, y, F(x, y))
\end{aligned}
$$

from previously defined functions $a(x)$ and $b_{\mu}(x, y, z)$ (for all μ) if the b_{μ} obey the following identity imposed by A :

C

$$
b_{\mu}\left(x, \mathrm{~S}_{\nu} y, b_{\nu}(x, y, z)\right)=b_{\mu}(x, y, z) \text { if } \nu<\mu
$$

The rules of inference are the following schemata
$S b_{1}$
$S b_{2}$

$$
\begin{aligned}
F(x) & =G(x) \\
\hline F(A) & =G(A) \\
A & =B \\
\hline F(A) & =F(B)
\end{aligned}
$$

