GENERALIZATION OF A RESULT OF HALLDÉN

ROBERT V. KOHN

We take $M, \vee, 7$ as primitive connectives; let \mathcal{K} be the set of all wffs in these connectives. We take the connectives $\wedge, \supset, \multimap, \equiv$, and L to be defined in the usual ways. If $\alpha \in \mathcal{L}$, we write $\mathcal{L}[\alpha]$ for the smallest subset of \mathcal{L} containing α and closed under the connectives M, v, ᄀ. A modal logic is a proper subset of \mathcal{K} which is closed under the rules of uniform substitution and modus ponens, and contains all tautologies. If L_{1} and L_{2} are modal logics, then L_{1} is an extension of L_{2} iff $L_{2} \subseteq L_{1}$. Let PC denote the classical propositional calculus. For any wff $\alpha \in \mathcal{L}$, let $\hat{\alpha}$ be the wff of PC obtained by erasing all occurrences of " M " in α.
Lemma Let $\alpha \in \mathcal{L}[p]$, and suppose $\stackrel{\zeta}{\mathrm{PC}} \hat{\alpha} \supset p$. Then there is an $n \geqslant 1$ such that $\stackrel{\Gamma}{\mathrm{s} 2} \alpha \longrightarrow M^{n} p$.
Proof: First of all, notice that for any wffs γ, δ and any affirmative
 is an n such that $\vdash_{\bar{s} 2} F p \rightharpoondown M^{n} p$. The proof now proceeds by induction, showing that the Lemma is true of both β and $\urcorner \beta$ for every $\beta \in \mathcal{L}[p]$. In the case $\beta=p$, the assertion of the Lemma is trivial for β and vacuous for $\urcorner \beta$. Suppose the Lemma has been verified for both γ and 7γ. If β is $M \gamma$ and ${ }^{{ }_{\mathrm{PC}}} \hat{\beta} \supset p$, then ${ }^{\prime} \overline{\mathrm{PC}} \hat{\gamma} \supset p$, so by hypothesis there is an n such that ${ }_{\overline{\mathrm{S} 2}} \gamma \rightarrow M^{n} p$. Then ${ }_{\overline{\mathrm{S}} 2} M_{\gamma} \longrightarrow M^{n+1} p$. If β is $\urcorner M \gamma$ and ${ }^{\mathrm{PC}} \hat{\beta} \supset p$, then ${ }^{\overline{\mathrm{PC}}} \hat{\urcorner} \gamma \supset p$. So there is an n such that $\left.{ }_{\overline{\mathrm{S} 2}}\right\urcorner \gamma \rightharpoondown M^{n} p$. Then $\left.\stackrel{\digamma}{\mathrm{S} 2} L\right\urcorner \gamma \rightharpoondown L M^{n} p$, so $\left.\stackrel{\zeta}{\mathrm{S} 2}\right\urcorner M_{\gamma} \longrightarrow M^{n+1} p$. Now suppose the Lemma has been verified for $\left.\gamma_{1}, \gamma_{2},\right\urcorner \gamma_{1}$, and $\urcorner \gamma_{2}$. If β is $\gamma_{1} \vee \gamma_{2}$ and $\stackrel{\rightharpoonup}{\mathrm{PC}}^{\hat{\beta}} \supset p$, then $'_{\overline{\mathrm{PC}}} \hat{\gamma}_{1} \supset p$ and ${ }^{\prime} \stackrel{\rightharpoonup}{\mathrm{PC}} \hat{\gamma}_{2} \supset p$. So there are n_{1} and n_{2} such that $\stackrel{5}{s} 2^{\delta_{1}}-3 M^{n_{1}} p$ and ${ }_{\mathrm{S} 2} \gamma_{2}-3 M^{n_{2}} p$. Put $n=\max \left(n_{1}, n_{2}\right)$; then $\stackrel{\zeta}{\mathrm{S} 2}^{\gamma_{1} \vee \gamma_{2}}\left\langle M^{n} p\right.$. Now suppose β is $7\left(\gamma_{1} \vee \gamma_{2}\right)$, and ${ }_{\hat{P C}} \hat{\beta} \supset p$. Then $\left.\stackrel{\mid}{\mathrm{PC}}\left(7 \hat{\gamma}_{1} \wedge\right\urcorner \hat{\gamma}_{2}\right) \supset p$; since γ_{1} and γ_{2} are in $\mathcal{L}[p]$, it follows that $\left.\vdash\right\urcorner \hat{\gamma}_{i} \supset p$ for either $i=1$ or $i=2$. Then by hypothesis, there is an n such that $\left.{ }_{\bar{S} 2}\right\urcorner \gamma_{i}-3$ $M^{n} p$, so $\left.\digamma_{\overline{\mathrm{S}} 2}\right\urcorner\left(\gamma_{1} \vee \gamma_{2}\right) \longrightarrow M^{n} p$. The induction is now complete.

The modal logic Tr of [2] is that modal logic which contains all $\alpha \in \mathcal{L}$ such that $\uparrow_{\mathrm{PC}} \hat{\alpha}$. McKinsey [3] has shown that Tr is the unique Post-complete extension of $S 4$.

