ARITHMETIC OPERATIONS ON ORDINALS

MARTIN M. ZUCKERMAN

1 Introduction* We characterize addition and multiplication of ordinal numbers. We assume familiarity with the basic properties of ordinal arithmetic (Sierpinski [3], Chapter 14). Although our discussion is informal, it could be formalized within Gödel-Bernays set theory, e.g., within the axiom system consisting of groups A, B, C, and D of Gödel [1].

Greek letters, sometimes with subscripts, will denote ordinals; "On" will denote the class of all ordinals. As usual, " + " and "." stand for ordinal addition and multiplication, respectively. Braces will designate proper classes as well as sets.

2 Addition Let + be any binary operation on On that is such that for all ordinals α, β, and γ,

1) $\alpha+0=\alpha$;
2) if $\beta \leqslant \gamma$, then $\alpha+\beta \leqslant \alpha+\gamma$;
3) if $\beta \leqslant \gamma$, then there is a unique δ such that $\beta+\delta=\gamma$.

In Proposition 2.1 and its corollary, we assume that + is a binary operation on On that satisfies 1), 2), and 3).

Proposition 2.1 Let α, β, and γ be ordinals. If $\beta<\gamma$, then $\alpha+\beta<\alpha+\gamma$.
Proof: $\alpha=\alpha+0 \leqslant \alpha+\gamma$, by 1) and 2). Thus, if $\alpha+\beta=\alpha+\gamma$, then by 3), $\beta=\gamma$. By 2), $\alpha+\beta \leqslant \alpha+\gamma$; therefore, we must have $\alpha+\beta<\alpha+\gamma$.
Corollary For all ordinals α, β, and $\gamma, \beta<\gamma$ if and only if $\alpha+\beta<\alpha+\gamma$.
Define $+_{1},+_{2}$, and $+_{3}$ on On as follows:
For $\alpha, \beta \in O_{n}$,

$$
\begin{aligned}
& \alpha+1 \beta=\beta ; \\
& \alpha+{ }_{2} 0=\alpha,
\end{aligned}
$$

[^0]
[^0]: *This research was supported by a City University of New York Faculty Research Award, 1970-72.

