Notre Dame Journal of Formal Logic Volume XVI, Number 4, October 1975 NDJFAM

ARITHMETIC OPERATIONS ON ORDINALS

MARTIN M. ZUCKERMAN

1 Introduction* We characterize addition and multiplication of ordinal numbers. We assume familiarity with the basic properties of ordinal arithmetic (Sierpiński [3], Chapter 14). Although our discussion is informal, it could be formalized within Gödel-Bernays set theory, e.g., within the axiom system consisting of groups A, B, C, and D of Gödel [1].

Greek letters, sometimes with subscripts, will denote ordinals; "On" will denote the class of all ordinals. As usual, "+" and "." stand for ordinal addition and multiplication, respectively. Braces will designate proper classes as well as sets.

2 Addition Let + be any binary operation on On that is such that for all ordinals α , β , and γ ,

1) $\alpha + 0 = \alpha;$

2) if $\beta \leq \gamma$, then $\alpha + \beta \leq \alpha + \gamma$;

3) if $\beta \leq \gamma$, then there is a unique δ such that $\beta + \delta = \gamma$.

In Proposition 2.1 and its corollary, we assume that + is a binary operation on On that satisfies 1), 2), and 3).

Proposition 2.1 Let α , β , and γ be ordinals. If $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.

Proof: $\alpha = \alpha + 0 \le \alpha + \gamma$, by 1) and 2). Thus, if $\alpha + \beta = \alpha + \gamma$, then by 3), $\beta = \gamma$. By 2), $\alpha + \beta \le \alpha + \gamma$; therefore, we must have $\alpha + \beta \le \alpha + \gamma$.

Corollary For all ordinals α , β , and γ , $\beta < \gamma$ if and only if $\alpha + \beta < \alpha + \gamma$.

Define $+_1$, $+_2$, and $+_3$ on On as follows:

For α , $\beta \in On$,

α	+1	β	=	β;
α	$+_2$	0	=	α,

^{*}This research was supported by a City University of New York Faculty Research Award, 1970-72.

Received January 29, 1973

578