Notre Dame Journal of Formal Logic Volume XVI, Number 3, July 1975 NDJFAM

A NOTE ON P-ADMISSIBLE SETS WITH URELEMENTS

JUDY GREEN

In [2] Barwise states that although the introduction of urelements into Zermelo-Fraenkel set theory is redundant, their introduction into the weaker Kripke-Platek theory for admissible sets is not. In this note* we will show that their introduction into the intermediate theory of power set admissible sets is once again redundant since all P-admissible sets with urelements are of the same form as P-admissible sets, i.e., $\bigvee_M(\kappa) = H_M(\kappa)$ where κ is a strong limit cardinal and $\kappa = \exists_{\kappa}$.

We assume familiarity with the formulation of the theory KPU (Kripke-Platek with urelements) and the language in which it is formulated (see [2]). We also assume familiarity with the hierarchy of set theoretic predicates due to Lévy [5], and the primitive recursive set functions of Jensen and Karp [4]. We expand the notation of [2] as follows:

Definition: A structure $\mathfrak{A}_{\mathfrak{M}} = (\mathfrak{M}; A, E, P, \ldots)$ for the language $L(\epsilon, \mathcal{P}, \ldots)$ consists of

(1) a structure $\mathfrak{M} = \langle M, \ldots \rangle$ for the language L,

(2) a nonempty set A disjoint from M,

(3) a relation $E \subseteq (M \cup A) \times A$ to interpret ϵ ,

(4) a function P from A into A to interpret P, and

(5) other functions, relations, and constants on $M \cup A$ which interpret the other symbols in $L(\epsilon, \mathcal{P}, \ldots)$.

In the language $L(\epsilon, P, \ldots)$ variables are distinguished to allow quantification over M (urelements), A (sets), and $A \cup M$. The variables used are, respectively: p, q, r, \ldots ; a, b, c, d, \ldots ; and x, y, z, \ldots .

Definition: The theory $\mathcal{P}\text{-}\mathsf{KPU}$ consists of the universal closures of the axioms of

extensionality: $\forall x(x \in a \leftrightarrow x \in b) \rightarrow a = b$,

^{*}Research supported by the Rutgers University Research Council.