Notre Dame Journal of Formal Logic Volume XVI, Number 3, July 1975 NDJFAM

SUMS OF α -SPACES

NORTHRUP FOWLER, III

1 Introduction* In [1] and [2], Dekker introduced and studied an \aleph_0 dimensional recursive vector space \overline{U}_F over a countable field F. Briefly, it consists of an infinite recursive set ϵ_F of numbers (i.e., non-negative integers), an operation + from $\epsilon_F \times \epsilon_F$ into ϵ_F and an operation \cdot from $F \times \epsilon_F$ into ϵ_F . If the field F is identified with a recursive set, both + and \cdot are partial recursive functions. Let β be a subset of ϵ_F . We call β a *repère* if it is linearly independent; β is a *r.e. repère* if β is a r.e. set; and β is an α -repère if it is included in some r.e. repère. A subspace V of \overline{U}_F is an α -space if it has at least one α -basis, i.e., at least one basis which is also an α -repère. A subspace V is *isolic* if it includes no r.e. repère; it is r.e. if it is r.e. as a set. The word "space" is used in the sense of "subspace of \overline{U}_F ", and we denote "W is a subspace of V" by " $W \leq V$ ". We usually write (0) for $\{0\}$, and \overline{U} for \overline{U}_F . Let $\alpha \subseteq \epsilon_F$. If $\alpha = \emptyset$, $L(\alpha) = (0)$. If $\alpha \neq \emptyset$, $L(\alpha)$ denotes the span of α , i.e., the set of all linear combinations (with coefficients in F) of finitely many elements of α . If $\alpha = \{a_0, \ldots\}$, we usually write $L(a_0, \ldots)$ instead of $L(\{a_0, \ldots\})$. We use \mathfrak{c} to denote the cardinality of the continuum.

The reperes β and γ are *independent* if they are disjoint and their union is a repère. The spaces V and W are *independent* if $V \cap W = (0)$. The sets β and γ are *separable* (written: $\beta|\gamma$) if they can be separated by r.e. sets. The α -repères β and γ are α -*independent* (written: $\beta||\gamma$), if they can be separated by independent r.e. repères. The spaces V and W are α *independent* (written: V||W), if there are independent r.e. spaces \overline{V} and \overline{W} such that $V \leq \overline{V}$ and $W \leq \overline{W}$. For spaces V, W, W is an α -subspace of V (written: $W \leq_{\alpha} V$) if there is an α -space S such that W||S and $W \oplus S = V$.

In [3] we proved that the intersection of two α -spaces need not be an α -space. The same question naturally arises concerning the sum of two

^{*}The results presented in this paper were taken from the author's doctoral dissertation written at Rutgers University under the direction of Professor J. C. E. Dekker.