Notre Dame Journal of Formal Logic
Volume XVI, Number 3, July 1975
NDJFAM

SUMS OF α-SPACES

NORTHRUP FOWLER, III

1 Introduction* In [1] and [2], Dekker introduced and studied an \aleph_{0} dimensional recursive vector space \bar{U}_{F} over a countable field F. Briefly, it consists of an infinite recursive set ϵ_{F} of numbers (i.e., non-negative integers), an operation + from $\epsilon_{F} \times \epsilon_{F}$ into ϵ_{F} and an operation \cdot from $F \times \epsilon_{F}$ into ϵ_{F}. If the field F is identified with a recursive set, both + and . are partial recursive functions. Let β be a subset of ϵ_{F}. We call β a repère if it is linearly independent; β is a r.e. repère if β is a r.e. set; and β is an α-repère if it is included in some r.e. repère. A subspace V of \bar{U}_{F} is an α-space if it has at least one α-basis, i.e., at least one basis which is also an α-repère. A subspace V is isolic if it includes no r.e. repère; it is r.e. if it is r.e. as a set. The word "space" is used in the sense of "subspace of \bar{U}_{F} ", and we denote " W is a subspace of V '" by " $W \leqslant V$ '. We usually write (0) for $\{0\}$, and \bar{U} for \bar{U}_{F}. Let $\alpha \subset \epsilon_{F}$. If $\alpha=\varnothing, L(\alpha)=(0)$. If $\alpha \neq \varnothing, L(\alpha)$ denotes the span of α, i.e., the set of all linear combinations (with coefficients in F) of finitely many elements of α. If $\alpha=\left\{a_{0}, \ldots\right\}$, we usually write $L\left(a_{0}, \ldots\right)$ instead of $L\left(\left\{a_{0}, \ldots\right\}\right)$. We use \mathfrak{c} to denote the cardinality of the continuum.

The reperes β and γ are independent if they are disjoint and their union is a repère. The spaces V and W are independent if $V \cap W=(0)$. The sets β and γ are separable (written: $\beta \mid \gamma$) if they can be separated by r.e. sets. The α-repères β and γ are α-independent (written: $\beta \| \gamma$), if they can be separated by independent r.e. repères. The spaces V and W are α independent (written: $V \| W$), if there are independent r.e. spaces \bar{V} and \bar{W} such that $V \leqslant \bar{V}$ and $W \leqslant \bar{W}$. For spaces V, W, W is an α-subspace of V (written: $W \leqslant_{\alpha} V$) if there is an α-space S such that $W \| S$ and $W \oplus S=V$.

In [3] we proved that the intersection of two α-spaces need not be an α-space. The same question naturally arises concerning the sum of two

[^0]
[^0]: *The results presented in this paper were taken from the author's doctoral dissertation written at Rutgers University under the direction of Professor J. C. E. Dekker.

