TWO IDENTITIES FOR LATTICES, DISTRIBUTIVE LATTICES AND MODULAR LATTICES WITH A CONSTANT

SABURO TAMURA

In his paper [3] J. A. Kalman has defined lattices using two identities and six variables. We shall define lattices using two identities and five variables in Theorem 1. In Theorem 2 we shall give an axiom system for lattices with 0 consisting of two identities. J. Sholander's axiom system for distributive lattices with 0 contains three identities (cf., [5]), but our axiom system in Theorem 3 consists of two identities. In Theorem 4 we shall give a definition for distributive lattices with 1 in the Croisot-Sobociński style (cf., [1] and [7]). Finally, as axiom system for modular lattices with 0 shall be given in Theorem 5. In the remarks, axiom systems for lattices, distributive lattices and modular lattices with two constants are given by three identities.

Theorem 1. Any algebraic system $\langle A; \cdot; + \rangle$ with two binary operations \cdot and +, which satisfies the following two identities

L1. a = ba + aL2. ((ab)c + d) + e = ((bc)a + e) + (b + d)d

is a lattice

Proof: We can prove it as Kalman has shown in [3] (*cf.*, Theorem 2 in this paper).

Theorem 2. Any algebraic system $\langle A; \cdot; +, 0 \rangle$ with two binary operations \cdot and +, and with a constant 0, which satisfies the following two identities

L1. a = ba + aL2'. (((0 + a)b)c + d) + e = ((bc)a + e) + (b + d)d

is a lattice with 0.

 Proof:

 3.
 c + a = (((0 + a)b)c + c) + a = ((bc)a + a) + (b + c)c = a + (b + c)c

 [L1, L2', L1]

 4.
 c + a = a + (bc + c)c = a + cc

 [3, L1]

Received May 24, 1974