Notre Dame Journal of Formal Logic Volume XVI, Number 1, January 1975 NDJFAM

FORMULAS WITH TWO GENERALIZED QUANTIFIERS

DANIEL GOGOL

In this paper we give a partial solution to the two problems Yasuhara presents at the end of [2]. Yasuhara shows that in formal languages having finitary predicate and function symbols and in which " \wedge '", " \sim ', and " v " have their usual meanings and " $(\forall x)$ " is equivalent to " $\sim(\exists x) \sim$ " and, for some k, " $\exists x$)" means "there exist at least ω_{k} elements x such that," the set of closed formulas which are true in all models of cardinality $\geqslant \omega_{k}$ is the same for each $k \geqslant 0$ and each corresponding interpretation of " $(\exists x)$ ". He calls this set of formulas VI. The set of closed formulas not in VI is called SI.

For each finite number n, " $\exists x$)" can be interpreted to mean 'there exist at least n elements x such that," and then the set of closed formulas true in all models having at least n elements is called V_{n}. The set of closed formulas not in V_{n} is called S_{n}. The intersection of all the sets V_{n} is called VF. If V is a set of formulas, then by $V, 2$ we mean the set of formulas in V having only 2 quantifiers.

Our results are the following:
Theorem $1 \mathrm{VF}, 2 \underset{\neq}{\subsetneq} \mathrm{VI}, 2 \underset{\ddagger}{\subsetneq} \mathrm{~V}_{1}, 2$.
Theorem $2 \mathrm{VF}, 2$ and $\mathrm{VI}, 2$ and $\mathrm{V}_{1}, 2$ are recursive.
Proof of Theorem 1: We first prove VF, $2 \subset$ VI, 2.
Case 1. If $(\exists x)(\forall y) P(x, y)$ is in $\mathrm{VF}, 2$, then it is in V_{1}, by definition. So $(\forall x)(\exists y) \sim P(x, y)$ is not in S_{1} and therefore $\sim P\left(a_{1}, a_{2}\right) \wedge \sim P\left(a_{2}, a_{3}\right) \wedge \ldots \wedge$ $\sim P\left(a_{n}, a_{1}\right)$ is, for all n, a quantifier-free formula which is not true under any valuation of its atomic formulas, because otherwise $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ would be the universe of a model for $(\forall x)(\exists y) \sim P(x, y)$. But this means that if " $\exists x$)" is given the interpretation "there exist at least ω_{0} elements x such that," then $(\forall x)(\exists y) \sim P(x, y)$ is unsatisfiable. Because if $\mathfrak{M n}$ were a model for it, then there would be an element a_{1}.in such that there.were infinitely many elements a_{2} in \mathfrak{M} such that $\mathfrak{M} \vdash \sim P\left(a_{1}, a_{2}\right)$. But all but a finite number of these elements a_{2} would have infinitely many elements a_{3} in \mathfrak{M} such that $\mathfrak{M} \vdash \sim P\left(a_{2}, a_{3}\right)$. Thus we can find elements a_{1}, a_{2}, and a_{3} in \mathfrak{M} such that $\mathfrak{M} \vdash \sim P\left(a_{1}, a_{2}\right) \wedge \sim P\left(a_{2}, a_{3}\right)$.

