Notre Dame Journal of Formal Logic
Volume XV, Number 4, October 1974
NDJFAM

## UNARY PREDICATES

## JAMES ANDREW FULTON

The following concerns what seems to be a mistake in the construction of a formal semantics for the predicate calculus. I have found this mistake in three books: Mendelson's [3], Shoenfeld's [4], and Leblanc and Wisdom's [1]. Other books verge on the mistake; of course, I cannot claim to have searched all developments of formal semantics. These three books differ in metalogical terminology. I shall follow the usage of Mendelson; but for purposes of cross-reference when a term is introduced, I shall indicate in parentheses the terms used by the other authors. When definitions differ among the authors only in terminology, I shall quote only Mendelson; but I shall provide in the footnote page references for all three books.

Any formal semantics involves two steps: An interpretation ([4]: structure; [1]: $D$ - interpretation) assigns elements from a particular non-empty set, the domain ([4]: universe), to certain elements of the syntax including individual constants ([4]: constants (i.e., O-ary functions); [1]: terms) and predicate letters ([4]: predicate symbols; [1]: predicates). Predicate letters have associated with them a certain positive integer [Shoenfeld also permits 0 ] which is the degree of the predicate letter; a predicate letter of degree $n$ is an $n$-ary or $n$-place predicate. The second step is a definition of satisfaction ([4]: truth; [1]: truth on a D-interpretation) in terms of an interpretation.

In their respective definitions of satisfaction all three systems treat atomic wfs ([4]: closed formulas; [1]: statements) constructed from unary predicates as a special case of atomic wfs constructed from $n$-ary predicates:

If $\mathcal{A}$ is an atomic wf $A_{j}^{n}\left(t_{1}, \ldots, t_{n}\right)$ and $B_{j}^{n}$ is the corresponding relation ([4]: predicate; [1]: subset of $n$-tuples on the domain) of the interpretation, then the sequence $s$ satisfies $\mathcal{A}$ if and only if $B_{j}^{n}\left(s^{*}\left(t_{1}\right), \ldots, s^{*}\left(t_{n}\right)\right)$, i.e., if the $n$-tuple $\left(s^{*}\left(t_{1}\right), \ldots, s^{*}\left(t_{n}\right)\right)$ is in the relation $B_{j .}^{n}{ }^{1}$

[^0]
[^0]:    1. [3], p. 51; [4], p. 19; [1], p. 307.
