Notre Dame Journal of Formal Logic Volume XV, Number 3, July 1974 NDJFAM

GENERALIZATIONS OF THE DISTRIBUTIVE AND ASSOCIATIVE LAWS

ALAN C. WILDE

1 Introduction Let $x \triangle y$ and $x \bigcirc y$ denote two truth-value functions: $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$, where 1 and 0 denote "true" and "false" respectively. The two functions "and" and "or" satisfy the law

(*)
$$x \bigtriangleup (y \odot z) = (x \bigtriangleup y) \odot (x \bigtriangleup z)$$

in either order. We would like to weaken (*) so that more functions satisfy the relationship. To do so, we use

(**)
$$x \bigtriangleup (y \odot z) = (x \bigtriangleup y) \odot (x \bigtriangleup z) \odot (x \bigtriangleup I)$$

where I is the identity of $x \bigcirc y$. (**) is a generalization of (*) for the reason that all functions $x \bigcirc y$ that have identities and all $x \bigtriangleup y$ that together satisfy (*) also satisfy (**), but not conversely. This is shown in Theorem 1.

"And" and "or" satisfy the associative law

 $x \bigtriangleup (y \bigtriangleup z) = (x \bigtriangleup y) \bigtriangleup z$,

and so does "equivalence" and "exclusive or." However, we shall demonstrate that for all truth-functions $x \triangle y$, the truth-values of $x \triangle (x \triangle z) \equiv (x \triangle y) \triangle z$ and $x \triangle (y \triangle z) \lor (x \triangle y) \triangle z$ are independent of y.

2 The Generalized Distributive Law We wish to prove the following:

Theorem 1 (**) holds

(a) for all $x \triangle y$ if $x \bigcirc y$ is either $x \equiv y$ or $x \lor y$;

and

(b) for all $x \triangle y$ such that $y \leq z$ implies $x \triangle y \leq x \triangle z$ if $x \bigcirc y$ is $x \lor y$ or $x \land y$.

Proof: Note that $x \land y$, $x \lor y$, $x \equiv y$, and $x \lor y$ are the only functions that have identities, so Theorem 1 has all the possible combinations. All four of them happen to be commutative and associative. For part (a), let us show

Received September 18, 1972