Notre Dame Journal of Formal Logic Volume XV, Number 3, July 1974 NDJFAM

α -models and the systems T and T*

NEWTON C. A. da COSTA

This paper¹ is the fourth (and last) of a series in which we study two systems of set theory, T and T*, which were designed to serve as foundations for category theory (*cf.* [3], [4], and [5]). It is divided into two parts; in the first, we develop and make more precise certain results of section **3** of [5]. As the subject matter of the first part is of independent interest, it is treated here in some detail; nonetheless, the full development of the subject will appear elsewhere. In the second part, we only outline how **T** and **T*** can be used as foundations for the notions of category and functor, since it is not difficult to work out the details.

I. α -Models

1 Introduction Let us consider a first-order language \mathcal{L} containing the family $(l)_{i \in \alpha}$ of (distinct) constant terms, where α is an ordinal (in the sense of von Neumann) greater than 0, and a set Γ of sentences of \mathcal{L} (in particular, Γ can be a first-order theory). An α -model of Γ is a model in the ordinary sense, such that every element of it is denoted by at least one term l_i , $i \in \alpha$. A sentence F of \mathcal{L} is said to be a semantic α -consequence of Γ if it is true in every α -model of Γ . Then, it seems natural to ask the following question: Is it possible to strengthen the first-order predicate calculus, with or without equality, in such a manner as to assure that if F is a semantic α -consequence of Γ , then F is also a syntactic consequence of Γ in the new strengthened calculus? A strengthened version \mathcal{O} of the predicate calculus is called α -complete if, and only if, whenever a sentence F is a syntactic consequence of a set Γ of sentences, we also have that F is a syntactic consequence of Γ in \mathcal{O} .

The concept of α -model appears when we consider theories in which it is natural to suppose that their intuitive models must satisfy the condition

^{1.} Work supported by a research grant of the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil. The author is indebted to Professors L. Henkin and C. Pinter for helpful suggestions.