A RESULT OF EXTENDING BOCHVAR'S 3-VALUED LOGIC

KENNETH W. COLLIER

In this note I shall adopt the notation that Nicholas Rescher uses in [1]. Thus lower case Roman letters are meta-variables, and lower case Greek letters are object variables. We begin with Bochvar's basic system B_{3} :

p	$7 p$	$p \wedge q$				$p \vee q$			$p \rightarrow q$			$p \leftrightarrow q$		
			T	1	F	T	1	F	T	1	F	T	1	F
T	F	T	T		F	T	1	T	T	1	F	T	1	F
1	1	1	I	1	1	I	1	1	1	1	1	I	1	1
F	T	F	F	I	F	T	1	F	T	1	T	F	1	T

First we extend this in the usual way by adopting an assertion operator defined truth-functionally:

p	$\mathrm{~A} p$
T	T
I	F
F	F

and using it to define new connectives:

$$
\begin{aligned}
& \text { ‘ } \exists p \text { ’ for ‘ } 7 \mathrm{~A} p \text { ’ } \\
& \text { ' } p \text { ^ } q \text { ' for ' } \mathrm{A} p \wedge \mathrm{~A} q \text { ' } \\
& \text { ' } p \vee q \text { ' for ' } \mathrm{A} p \vee \mathrm{~A} q \text { ' } \\
& \text { ' } p \Rightarrow q \text { ' for ' } \mathrm{A} p \rightarrow \mathrm{~A} q \text { ' } \\
& \text { ' } p \leftrightarrow q \text { ' for ' } \mathrm{A} p \leftrightarrow \mathrm{~A} q \text { '. }
\end{aligned}
$$

This generates the following matrices:

p	${ }^{7} p$	p ^ q				$p \vee q$			$p \Rightarrow q$			$p \Leftrightarrow q$		
			T	1	F	T	1	F	T	1	F	T	I	F
T	F	T	T	F	F	T	T	T	T	F	F	T	F	F
1	T	1	F	F	F	T	F	F	T	F	T	F	T	T
F	T	F	F	F	F	T	F	F	T	T	T	F	T	T

