SEMANTICS FOR CONTINGENT IDENTITY SYSTEMS

ZANE PARKS

In [2], it was shown that the semantics developed by Hughes and Cresswell in [1], pp. 198-199, for the contingent identity systems $\mathrm{T}+\mathrm{CI}$, $S 4+C I$, and $S 5+C I$ is inadequate in that none of these systems is sound with respect to the corresponding notion of validity. The purpose of this note is to present a semantics which is adequate. We restrict our attention to $\mathrm{T}+\mathrm{CI}$; extending this semantics to $\mathrm{S} 4+\mathrm{CI}$ and $\mathrm{S} 5+\mathrm{CI}$ is straightforward.

A model structure is an ordered quadruple $\langle W, R, D, I\rangle$ such that W and D are nonempty sets, R is a binary reflexive relation on W, and I is a nonempty subset of the set of functions from W into D. A value assignment V on a model structure $\langle W, R, D, I\rangle$ is a function which assigns each variable a a value $V(\mathbf{a})$ in I and each n-place predicate letter φ a value $V(\varphi)$ in the set of functions from W into the power set of the n 'th Cartesian product of D with itself. Let V be a value assignment on $\langle W, R, D, I\rangle$ and let $i \in I$. Then $V\left[\begin{array}{l}\alpha \\ i\end{array}\right]$ is defined to be that value assignment on $\langle W, R, D, I\rangle$ which assigns i to a and elsewhere agrees with V. A model is an ordered quintuple $\langle W, R, D, I, V\rangle$ such that $\langle W, R, D, I\rangle$ is a model structure and V is a value assignment on $\langle W, R, D, I\rangle$. Let $\mathfrak{M}=\langle W, R, D, I, V\rangle$ be a model and $i \in I$. Then $\mathfrak{M}\left[\begin{array}{l}\mathbf{a} \\ i\end{array}\right]$ is defined to be $\left\langle W, R, D, I, V\left[\begin{array}{l}\alpha \\ i\end{array}\right]\right\rangle$. Let $\mathfrak{M}=$ $\langle W, R, D, I, V\rangle$ be a model and $w \epsilon W$. Then we define truth of a formula at w in \mathfrak{M} (read ' $\mathfrak{M}, w \vDash \alpha^{\prime}$ as ' α is true at w in \mathfrak{M} ') inductively as follows:
(i) $\quad \mathfrak{M}, w \vDash \varphi \mathbf{a}_{1} \ldots \mathbf{a}_{n}$ iff $\left\langle V\left(\mathbf{a}_{1}\right)(w), \ldots, V\left(\mathbf{a}_{n}\right)(w)\right\rangle \in V(\varphi)(w)$,
(ii) $\mathfrak{M}, w \vDash \mathbf{a}=\mathbf{b}$ iff $V(\mathbf{a})(w)=V(\mathbf{b})(w)$,
(iii) $\mathfrak{M}, w \vDash \sim \alpha$ iff it is not the case that $\mathfrak{M}, w \vDash \alpha$,
(iv) $\mathfrak{M}, w \vDash(\alpha \vee \beta)$ iff either $\mathfrak{M}, w \vDash \alpha$ or $\mathfrak{M}, w \vDash \beta$,
(v) $\mathfrak{M}, w \vDash L \alpha$ iff for all $w^{\prime} \in W$ such that $w R w^{\prime}, \mathfrak{M}, w^{\prime} \vDash \alpha$,
(vi) $\mathfrak{M}, w \vDash(\mathbf{a}) \alpha$ iff for each $i \in I, \mathfrak{M}\left[\begin{array}{l}\mathbf{a} \\ i\end{array}\right], w \vDash \alpha$.

A formula α is valid iff for each model \mathfrak{M} and w in $\mathfrak{M}, \mathfrak{M}, w \vDash \alpha$. Proof that

