THE INADEQUACY OF HUGHES AND CRESSWELL'S SEMANTICS FOR THE CI SYSTEMS

ZANE PARKS and TERRY L. SMITH

The purpose of this note is to show that the semantics developed by Hughes and Cresswell in [1], pp. 198-199, for the contingent identity systems T+CI, S4+CI, and S5+CI is inadequate in that none of these systems is sound with respect to the corresponding notion of validity. Since theorems of LPC are theorems of each of the CI systems,

(i)
$$\varphi x_0 x_1 \supset (\exists x_1)(\exists x_0) \varphi x_1 x_0$$

is a theorem in each of the CI systems. (We suppose variables to be indexed by the non-negative integers.) However, (i) is not S5 + CI-valid and so, is not T + CI- or S4 + CI-valid. We construct an S5 + CI countermodel to (i) as follows. Let $W = \{w\}$, $R = \{\langle w, w \rangle\}$, D = the set of non-negative integers, and for each variable x_i , let $V_1(x_i, w) = i$ and let $V_1(\varphi) = \{\langle \langle 0, 1 \rangle, w \rangle\}$. Finally, let θ be the smallest set of value-assignments A such that $V_1 \in A$ and if $V \in A$, \mathbf{q} and \mathbf{b} are variables, and V' is a value-assignment which is the same as V except that $V(\mathbf{q}, w) = V'(\mathbf{b}, w)$, then $V' \in A$. Evidently, $\langle W, R, D, V_1, \theta \rangle$ is an S5 + CI-model. Moreover, $V_1(\varphi x_0 x_1, w) = 1$ since

$$\langle\langle V_1(x_0, w), V_1(x_1, w)\rangle, w\rangle = \langle\langle 0, 1\rangle, w\rangle \epsilon V_1(\varphi).$$

A bit of computation reveals that $V_1((\exists x_1)(\exists x_0)\varphi x_1x_0, w)=1$ only if there is a $V \in \theta$ differing from V_1 only in assignment to x_0 and x_1 such that $V(\varphi x_1x_0, w)=1$, i.e., $\langle\langle V(x_1, w), V(x_0, w)\rangle, w\rangle \in V(\varphi)=V_1(\varphi)$. Only that value-assignment V which makes $V(x_0, w)=1$, $V(x_1, w)=0$, and which is otherwise the same as V_1 satisfies the second part of the condition, but this $V \notin \theta$. To see this last, we note that a simple induction on θ shows that for any $V' \in \theta$, either $V'=V_1$ or $\{V'(\mathbf{a}, w): \mathbf{a} \text{ is a variable}\}$ is a proper subset of D. Since V fails to satisfy this condition, $V \notin \theta$. So, $V_1((\exists x_1)(\exists x_0)\varphi x_1x_0, w)=0$. So, $V_1((i), w)=0$. So, (i) is not S5 + CI-valid.

We conjecture that the following modification in the condition on θ in a model $\langle W, R, D, V_1, \theta \rangle$ will yield an adequate semantics: for every $V \in \theta$ and for any individual variables $\mathbf{a}_1, \ldots, \mathbf{a}_n, \mathbf{b}_1, \ldots, \mathbf{b}_n$, there is a $V' \in \theta$ which is the same as V except that $V(\mathbf{a}_1, w) = V'(\mathbf{b}_1, w), \ldots$, and $V(\mathbf{a}_n, w) = V'(\mathbf{b}_n, w)$ for every $w \in W$. We shall not pursue that question here.