THE INADEQUACY OF HUGHES AND CRESSWELL'S SEMANTICS FOR THE CI SYSTEMS

ZANE PARKS and TERRY L. SMITH

The purpose of this note is to show that the semantics developed by Hughes and Cresswell in [1], pp. 198-199, for the contingent identity systems $T+C I, S 4+C I$, and $S 5+C I$ is inadequate in that none of these systems is sound with respect to the corresponding notion of validity. Since theorems of LPC are theorems of each of the CI systems,

$$
\begin{equation*}
\varphi x_{0} x_{1} \supset\left(\exists x_{1}\right)\left(\exists x_{0}\right) \varphi x_{1} x_{0} \tag{i}
\end{equation*}
$$

is a theorem in each of the CI systems. (We suppose variables to be indexed by the non-negative integers.) However, (i) is not S5 + CI-valid and so, is not $\mathrm{T}+\mathrm{CI}-$ or $\mathrm{S} 4+$ CI-valid. We construct an $\mathrm{S} 5+$ CI countermodel to (i) as follows. Let $W=\{w\}, R=\{\langle w, w\rangle\}, D=$ the set of non-negative integers, and for each variable x_{i}, let $V_{1}\left(x_{i}, w\right)=i$ and let $V_{1}(\varphi)=$ $\{\langle\langle 0,1\rangle, w\rangle\}$. Finally, let θ be the smallest set of value-assignments A such that $V_{1} \in A$ and if $V \epsilon A, \mathrm{a}$ and b are variables, and V^{\prime} is a value-assignment which is the same as V except that $V(\mathbf{a}, w)=V^{\prime}(\mathbf{b}, w)$, then $V^{\prime} \in A$. Evidently, $\left\langle W, R, D, V_{1}, \theta\right\rangle$ is an S5 + CI-model. Moreover, $V_{1}\left(\varphi x_{0} x_{1}, w\right)=1$ since

$$
\left\langle\left\langle V_{1}\left(x_{0}, w\right), V_{1}\left(x_{1}, w\right)\right\rangle, w\right\rangle=\langle\langle 0,1\rangle, w\rangle \in V_{1}(\varphi) .
$$

A bit of computation reveals that $V_{1}\left(\left(\exists x_{1}\right)\left(\exists x_{0}\right) \varphi x_{1} x_{0}, w\right)=1$ only if there is a $V \epsilon \theta$ differing from V_{1} only in assignment to x_{0} and x_{1} such that $V\left(\varphi x_{1} x_{0}, w\right)=1$, i.e., $\left\langle\left\langle V\left(x_{1}, w\right), V\left(x_{0}, w\right)\right\rangle, w\right\rangle \in V(\varphi)=V_{1}(\varphi)$. Only that valueassignment V which makes $V\left(x_{0}, w\right)=1, V\left(x_{1}, w\right)=0$, and which is otherwise the same as V_{1} satisfies the second part of the condition, but this $V \notin \theta$. To see this last, we note that a simple induction on θ shows that for any $V^{\prime} \in \theta$, either $V^{\prime}=V_{1}$ or $\left\{V^{\prime}(\mathbf{a}, w)\right.$: a is a variable $\}$ is a proper subset of D. Since V fails to satisfy this condition, $V \notin \theta$. So, $V_{1}\left(\left(\exists x_{1}\right)\left(\exists x_{0}\right) \varphi x_{1} x_{0}, w\right)=0$. So, $V_{1}((i), w)=0$. So, (i) is not $\mathrm{S} 5+\mathrm{CI}$-valid.

We conjecture that the following modification in the condition on θ in a model $\left\langle W, R, D, V_{1}, \theta\right\rangle$ will yield an adequate semantics: for every $V \epsilon \theta$ and for any individual variables $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$, there is a $V^{\prime} \epsilon \theta$ which is the same as V except that $V\left(\mathbf{a}_{1}, w\right)=V^{\prime}\left(\mathbf{b}_{1}, w\right), \ldots$, and $V\left(\mathbf{a}_{n}, w\right)=$ $V^{\prime}\left(\mathbf{b}_{n}, w\right)$ for every $w \epsilon W$. We shall not pursue that question here.

