A NOTE ON FINITE INTERMEDIATE LOGICS

J. G. ANDERSON

By an intermediate propositional calculus (IPC) we mean a propositional calculus whose formulae, or synonymously, sentences are constructed in the standard way from a denumerable set of propositional variables and connectives $\rightarrow, \wedge, \vee$,$\urcorner , and whose theorems are determined$ by the single rule modus ponens and the axiom schemes for Heyting's (intuitionistic) propositional calculus together with a single extra axiom scheme which is a two-valued tautology. We denote Heyting's propositional calculus by HC and the IPC with 'extra' axiom scheme X by HC $+X$. Two IPC are said to be equivalent if they have identical sets of theorems. (Up to equivalence we lose no generality in specifying that an IPC has just a single 'extra' axiom scheme from the case where an arbitrary finite number are allowed since a propositional calculus with axiom schemes those of HC together with, say, X_{1}, \ldots, X_{n} is equivalent to $\mathrm{HC}+X_{1} \wedge X_{2} \wedge$...^ X_{n}.)

We use the term model (often called matrix) of a propositional calculus in an entirely conventional sense, and since every model of an IPC is a fortiori a model of HC the study of models of IPC's can be interpreted as the study of Heyting algebras, also called pseudo-Boolean algebras, which are pseudo-complemented lattices with smallest element. There is an account in [4]. A model is said to be characteristic for an IPC if a sentence is a theorem of the IPC if and only if it is valid in the model. An IPC which has a finite characteristic model will be called finite.

The purpose of this paper is to describe an effective test to determine of an arbitrary IPC whether it is equivalent to a given finite IPC. The test will be of a particular sort: associated with a finite IPC HC + U, with characteristic model \mathfrak{m}, will be a finite set of finite models, and an arbitrary IPC $\mathrm{HC}+X$, will be equivalent to $\mathrm{HC}+U$ if and only if (i) X is valid in \mathfrak{M}, and (ii) X is invalid in each of the associated finite models. As an example of such a result in a particular case we have that $\mathrm{HC}+X$ is equivalent to $\mathrm{HC}+P \vee \neg P$, classical propositional calculus, if and only if X is a two-valued tautology and is invalid in the model which, considered as a lattice, has three linearly ordered elements: a result of Jankov.

