Notre Dame Journal of Formal Logic Volume XV, Number 1, January 1974 NDJFAM

SOME MEREOLOGICAL MODELS

ROBERT E. CLAY

In this paper we show that the non-empty regular sets of any topological space form a Boolean algebra with zero deleted. In [1] it is shown that any Boolean algebra with zero deleted gives rise to a model of mereology which is "isomorphic" to it in the sense that

$$[AB]: A \leq B = . \mathfrak{X}(A) \eta \mathsf{el} \langle \mathfrak{X}(B) \rangle,$$

where $\chi(A)$ and $\chi(B)$ correspond to A and B, and η is an analog of ontological ε . This paper will thus furnish us with a variety of mereological models. For example, Euclidean 3-space with the usual topology yields a model of atomless mereology.¹

First we give some ontological preliminaries.

DO1 $[Aa]: A \varepsilon \wedge (a) = .A \varepsilon A . \sim (A \varepsilon a)$

DO2 $[A\sigma]: A \varepsilon \mathbf{U} < \sigma > .= . [\exists a] . A \varepsilon a . \sigma \{a\}.$

DO3 $[A\sigma] :: A \varepsilon \bigcap \langle \sigma \rangle :: A \varepsilon A : [a] : \sigma \{a\} : \neg : A \varepsilon a .$

We shall usually write $\mathbf{U}\sigma$ instead of $\mathbf{U} < \sigma >$.

- DO4 $[ab] :: a \subseteq b :: [A] : A \in a : \supset . A \in b$
- **DO5** $[ab]: a \circ b := . a \subseteq b . b \subseteq a$
- DO6 $[ab]: \circ (a) \{b\} = .a \circ b$
- DO7 $[A]: A \varepsilon \lor .=. A \varepsilon A$
- DO8 $[A]: A \varepsilon \land .= .A \varepsilon A . \sim (A \varepsilon A)$
- **DO9** $[a]:! \{a\} = .[\exists A] . A \varepsilon a$

O1
$$[\sigma a]: \sigma \{a\} : \supset a \subseteq \bigcup \sigma$$

O2 $[\sigma a]: \sigma \{a\} . \supset . \bigcap \sigma \subset a$

Now we introduce the notion of topological space into Leśniewski's

1. Concerning atomless mereology, cf. e.g., [2].