Notre Dame Journal of Formal Logic Volume XIV, Number 4, October 1973 NDJFAM

A NOTE ON "TRANSITIVITY, SUPERTRASITIVITY AND INDUCTION"

W. RUSSELL BELDING and RICHARD L. POSS

In the review of our paper "Transitivity, Supertransitivity and Induction," [1] that occurred in [2], the reviewer pointed out two apparent errors. We will here clarify the points in mention.

The reviewer first stated that Lemma 9 "seems to be in error." The difficulty, as we see it, is that the transition from step (1) to step (2) was unclear, so we will present a somewhat more complete proof. We will assume

(1)
$$(y)(y \in \mathsf{Fld} \, \epsilon_{\varsigma} \land (x)(x \in y - \varphi(x)) \rightarrow \varphi(y)) - (y)(y \in \mathsf{Fld} \, \epsilon_{\varsigma} \rightarrow \varphi(y))$$

for formulas $\varphi(x)$ not containing y or u and show that

(2)
$$(u)(u \in \mathsf{Fld} R \land (v)(vRu \to \varphi(v)) \to \varphi(u)) \to (u)(u \in \mathsf{Fld} R \to \varphi(u))$$

for formulas $\varphi(x)$ not containing y or u. This would conclude the proof of the lemma. We now suppose the hypothesis of (2); i.e., we assume that

(3)
$$(u)(u \in \operatorname{Fld} R \wedge (v)(vRu \to \varphi(v)) \to \varphi(u))$$

where $\varphi(v)$ does not contain y or u. It remains to show that

(4) $(u)(u \in \operatorname{Fld} R \to \varphi(u)).$

We now define the formula ψ as follows:

(5)
$$\psi(x) = x \in \mathsf{Fld} \, \epsilon_{\mathsf{S}} \wedge \varphi(f'x).$$

We will first show that ψ satisfies the hypothesis of (1). Suppose that

(6) $y \in \mathsf{FId} \, \epsilon_{\mathsf{S}}$

and

(7)
$$(x)(x \in y \rightarrow \psi(x)).$$

We must show that $\psi(y)$. It is clear from (6) that the first part of the definition of ψ is satisfied. It remains to show that $\varphi(f'y)$. Since f is an isomorphism, there exists u such that