Notre Dame Journal of Formal Logic Volume XIV，Number 3，July 1973 NDJFAM

FURTHER EXTENSIONS OF S3＊

IVO THOMAS

In［1］S3＊was extended by 1．〔Kpq๔® $p q C L p L q$ to give $\mathbf{S 3}^{* *}$ which is factorable in the sense of Zeman．By adding 2．© $L p L L p$ either to $S 3^{*}$ or S3＊＊we get of course into the area of $S 4$ ．The weaker system should perhaps be chosen as $S 4 *$ ，the stronger one as $S 4 * *$ ．Neither is factorable but if we add 3 ．厄 $K p L p L K p L p$ to $S 4 * *$ we obtain again a factorable system S4＊＊＊．A still stronger system is given by adding 4．厄LpLKpLp to $\mathrm{S} 3 * *$ ． This we call S4 ${ }^{\triangle}$ ．It is obvious that we have：

That the containments are proper is shown by the following matrices，to be taken with the usual Boolean four or eight valued matrices for C, N, K ．

㭖1． $\mathrm{L}(* 1 * 234)=1333$
朋々．$L(* 1 * 234)=1334$
\＆ 月13．$^{2} \mathrm{~L}(* 1 * 2 * 3 * 45678)=15555778$
㭌4． $\mathrm{L}(* 1 * 234)=2444$
胴5． $\mathrm{L}(* 1 * 2 * 3 * 45678)=15565556$ ．

 tially equivalent．ARZ shows that 5 is not in $\mathrm{S} 4^{* * *}$ ，but it is not known whether it is in $S 4^{\triangle}$ ．Assuming that it is not，then since $\{S 3 * *, 5\}$ evidently contains $S 4 \triangle$ and by $\notin \mathfrak{A l}$ lacks ${ }^{\triangle} L p p$ ，this system is properly intermediate between $S 4$ and $S 4^{\triangle}$ ．It can evidently be thought of as $\left\{S 4^{\circ}, C L p p\right\}$ and so should be called $R 4^{0}$ on the analogy of Canty＇s R－systems in［2］，but it should be noted that it lacks the rule to infer $L \alpha$ from α ．

REFERENCES

［1］Thomas，Ivo，＂Unusual feature of S3＊，＂Notre Dame Journal of Formal Logic， vol．XIV（1973），p． 276.

