Notre Dame Journal of Formal Logic Volume XIV, Number 3, July 1973 NDJFAM

NOTE ABOUT THE BOOLEAN PARTS OF THE EXTENDED BOOLEAN ALGEBRAS

BOLESŁAW SOBOCIŃSKI

Throughout this note¹ the Boolean algebras extended by the additional extra-Boolean operations and postulates and containing the so-called Boolean part, in short **BA**, i.e., a postulate

Co the structure $\langle A, +, \times, -, 0, 1 \rangle$ is a Boolean algebra

will be called the extended Boolean algebras. In [3] and [2] it has been proved that in several systems of the extended Boolean algebras the postulate CO can be substituted for the postulates weaker than CO, namely either by

C0* the structure $\langle A, +, \times, -, 0, 1 \rangle$ is a non-associative Newman algebra

or by

C0** the structure $\langle A, +, \times, -, 0, 1 \rangle$ is a dual non-associative Newman algebra.

1 An inspection of the deductions presented in [3] and [2] suggests the following elementary, but general lemma:

Lemma I. Let \mathfrak{M} be an arbitrary extended Boolean algebra, M be the carrier set of \mathfrak{M} , \mathcal{A} be the set of all primitive extra-Boolean operations occurring in the definition of \mathfrak{M} , and \mathcal{B} be the set of all extra-Boolean postulates accepted in \mathfrak{M} . Let Z be a unary extra-Boolean operation which either belongs to \mathcal{A} or is definable in the field of the postulates of \mathfrak{M} . Then:

(i) if Z either belongs to \mathcal{A} or is syntactically definable in the field of C0*, extended by the postulates belonging to \mathcal{B} , and in that field a formula

A1 $[a]: a \in M . \supset . a + Za = Za$

^{1.} An acquaintance with [3] and [2] is presupposed.