Notre Dame Journal of Formal Logic Volume XIV, Number 3, July 1973 NDJFAM

A STRONGER DEFINITION OF A RECURSIVELY INFINITE SET

CHARLES H. APPLEBAUM

1 Introduction. The purpose of this announcement is to strengthen the definition of a recursively infinite set as defined by Dekker and Myhill in [2]. This can be done after we have proved that any function that maps an immune set, α , one-to-one into itself and has a partial recursive extension must be an ω -permutation of α .

2 Preliminaries. Let ε stand for the set of nonnegative integers (*numbers*), V for the class of all subcollections of ε (*sets*), and \mathcal{P} for the set of all mappings from a subset of ε into ε (*functions*). If f is a function, we write δf and ρf for its domain and range respectively. The relation of inclusion is denoted by \subset and that of proper inclusion by \subsetneq . Certain families of functions are denoted by special symbols.

 $\mathcal{F}_{1-1} = \{ f \in \mathcal{F} | f \text{ is one-to-one} \},$ $\mathcal{A} = \{ f \in \mathcal{F} | f \text{ has a partial recursive extension} \},$ $\mathcal{A}_{1-1} = \{ f \in \mathcal{A} | f \text{ has a one-to-one partial recursive extension} \}.$

The sets α and β are recursively equivalent [written: $\alpha \simeq \beta$], if $\delta f = \alpha$ and $\rho f = \beta$, for some $f \in \mathcal{A}_{1-1}$.

We recall from [1], Proposition 1 that

(*)
$$f \in \mathcal{A}_{1-1} \Leftrightarrow f, f^{-1} \in \mathcal{A}, \text{ for } f \in \mathcal{I}_{1-1}.$$

A permutation of a set α is an ω -permutation, if $f \in \mathcal{A}_{1-1}$. The reader is assumed to be familiar with the contents of [2].

3 Main Results.

Notation. For $f \in \mathcal{F}$, f^n is defined for $n \in \varepsilon$, as follows: $f^0 = i$, where *i* is the identity function, and $f^{n+1} = f \circ f^n$, where \circ is function composition, and f^{n+1} has the appropriate domain.

Theorem 1. Let α be an immune set and $f \in \mathcal{F}_{1-1} \cap \mathcal{A}$ such that $\delta f = \alpha$ and $\rho f \subset \alpha$, then f is an ω -permutation of α .

Received November 7, 1972